
Mining Broad Latent Query Aspects from Search Sessions

Xuanhui Wang∗

Dept. of Computer Science
University of Illinois at
Urbana-Champaign
Urbana, IL 61801

xwang20@cs.uiuc.edu

Deepayan Chakrabarti
Yahoo! Research
701 1st Avenue

Sunnyvale, CA 94089
deepay@yahoo-inc.com

Kunal Punera
Yahoo! Research
701 1st Avenue

Sunnyvale, CA 94089
kpunera@yahoo-inc.com

ABSTRACT
Search queries are typically very short, which means they are of-
ten underspecified or have senses that the user did not think of. A
broad latent query aspect is a set of keywords that succinctly repre-
sents one particular sense, or one particular information need, that
can aid users in reformulating such queries. We extract such broad
latent aspects from query reformulations found in historical search
session logs. We propose a framework under which the problem of
extracting such broad latent aspects reduces to that of optimizing a
formal objective function under constraints on the total number of
aspects the system can store, and the number of aspects that can be
shown in response to any given query. We present algorithms to find
a good set of aspects, and also to pick the best k aspects matching
any query. Empirical results on real-world search engine logs show
significant gains over a strong baseline that uses single-keyword re-
formulations: a gain of 14% and 23% in terms of human-judged
accuracy and click-through data respectively, and around 20% in
terms of consistency among aspects predicted for “similar” queries.
This demonstrates both the importance of broad query aspects, and
the efficacy of our algorithms for extracting them.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Search process, Query formulation

General Terms: Algorithms

Keywords: Latent user intents, query aspects, search sessions.

1. INTRODUCTION
Search engines have become the primary mode of discovering

and accessing content for a large fraction of web users. However,
even though they use search engines for critical information access
tasks, users are remarkably laconic in describing their information
needs [15, 19], resulting in vague queries. This is due to several
reasons. (1) Users often use search engines for performing research
on unfamiliar topics. They might skip important terms in search
queries simply because they are unacquainted with the topic-specific
vocabulary. (2) They may be aware of the terms but believe them
to be redundant; they may be unaware of the multiple ambiguous
senses of their incomplete queries. (3) Search engines themselves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ... $5.00.

* This work was done when the author was an intern with Yahoo! Research.
The author is supported at UIUC by a Yahoo! Ph.D. fellowship.

reinforce this behavior by not properly taking into account the extra
information when the users do provide long descriptive queries.

Discovering the intent latent in vague user queries is an active area
of research. Methods proposed in prior art can mainly be grouped
into two paradigms: query expansion and query suggestions. Query
expansion approaches implicitly add extra terms to the search query [3,
12]. Such terms could include synonyms of query words, stemmed
words, corrections of spelling mistakes, and so on. A special class
of methods employ Pseudo-Relevance Feedback approaches [5, 22]
to expand queries under the assumption that the top-k documents
retrieved for the original query are relevant. In many cases, how-
ever, queries have several possible intents. For example, the user
intent behind a query like “Canon EOS-40D Digital SLR” could be
to find reviews and ratings for the camera, or shopping sites to buy
the camera, or fan forums that discuss the camera, or simply to find
information about the camera. As there is no single dominant sense
of the query, no implicit query expansion can capture the true user
intent with any confidence. In these cases, the best course of action
is to help users explicitly specify the exact sense they had intended
for their query; query expansion methods are not applicable to this
problem.

The second type of methods, query suggestions, encourage users
to explicitly specify the hidden intent behind their queries by of-
fering them a list of semantically related queries. Users can then
pick one of them to further refine their query. Examples include the
“Also try” suggestions in Yahoo! and “Related searches” in Live
Search. Yahoo! also provides a search interface called “Search As-
sist” that lists concepts related to the user’s query, which the user can
then use to restrict her search. A similar “Refinement” functional-
ity for queries in specific domains like Health is provided by the
Google search engine. In addition to these examples, several meth-
ods have been proposed in academic venues to find semantically
related queries [8, 11, 17, 21]. A universal characteristic, however,
of these methods is that the suggestions they offer are narrow and
specific to the original query. As we explain next, this is not useful
for finding broad aspects as is the goal of this paper.

Broad Latent Aspects of Search Queries. In our analysis of the
Yahoo! search query logs we noticed the existence of many latent in-
tents that are very broad, and applicable to many classes of queries.
We call these intents Broad Latent Aspects of queries. An exam-
ple of this is “Reviews and Ratings.” Users often query for product
names but neglect to mention the term “review,” even when what
they really want are reviews for the product. The “Reviews and Rat-
ings” aspect is broad as well, since it is a latent aspect in queries for
products, movies, restaurants, and many others. Other examples in-
clude “Pictures,” when the query mentions a well-known landmark
or person, and “Download,” when the query only names a software
title or a famous photograph or painting, and so on.



Broad latent aspects of queries are characterized by the follow-
ing two properties. First, these intents are applicable to a broad
set of queries. As mentioned above, the “Reviews and Ratings”
aspect is useful for many types of product and service queries. Sec-
ond, users frequently do not specify terms indicating such aspects
in their queries. For instance, while many users do specify the term
“review” in their queries, a significant fraction only query for the
product or service name even when they explicitly intended to find
reviews. Together, these imply that a small set of such aspects, once
discovered, can be used in inferring user latent intent for many in-
complete queries. Since these aspects are global and reflect users’
major latent intents, they can potentially be used to design special-
ized search services such as vertical searches.

In this paper, we propose methods to mine a list of broad latent
aspects of search queries from query logs and present an approach to
decide which broad aspects apply to future, possibly unseen, search
queries. These query aspects are used to aid users in clarifying their
information needs and providing the best search results.

Query Reformulations in Search Sessions. We extract broad la-
tent aspects in queries by mining search engine user sessions. In
particular, we model the query reformulations within sessions to dis-
cover these aspects.

User search sessions contain a lot of semantic information. As an
example of a query reformulation in a user session, consider a user
who wants to read reviews for the “Canon EOS-40D Digital SLR”
but only provides the model name as the query. When the search
engine responds with a results page full of links to where the cam-
era can be bought, the user reformulates the query by inserting the
term “reviews” at the end. The user then finds the desired result on
the subsequent search results page and clicks on it. For the purposes
of our work, “Canon EOS-40D Digital SLR” is referred to as the
original query and “reviews” as the query qualifier. Such a refor-
mulation can be used to discover the user’s latent intent. We thus
extract such instances of query reformulations from user sessions,
and aggregate the query qualifiers to construct broad query aspects.

Broad Latent Aspects vs. Query Suggestions. The extraction of
broad aspects from query logs, and their use in query refinement,
has several advantages over standard query suggestion methods pre-
sented in the literature. The first advantage has to do with the dis-
covery and use of broad aspects and query suggestions. The broad
nature of the query aspects ensures that enough data is available
to reliably construct these aspects and predict when they apply to
user queries. This is in contrast to query suggestions that are often
applicable to specific queries and hence learned from significantly
lesser amount of data. The availability of more data for analysis
also implies that we can avoid presenting the user with redundant
query refinement options, as is often the case with query sugges-
tions. Finally, since by definition there are fewer broad aspects of
queries than query suggestions, we can learn more expensive model
for them and also maintain them better (the maintenance at commer-
cial search engines might involve costs of manual effort).

The second, more central, advantage is subtle, and concerns the
way users navigate the search results page. It has been shown in
user eye-tracking studies1 as well as by modeling user clicking be-
havior [10] that users scan search result pages extremely fast and do
not make complete determination of the relevance of results before
clicking. Users get used to repetitive features in the search results
page and use them to make clicking decisions. For example, the
presence of bold words in the title of the result indicates to users that
the title matched the query very closely while the indented search re-

1such as www.checkit.nl/pdf/eyetracking_
research.pdf

sult indicates to the user that this search result is somehow related
to the preceding one. When users are exposed to query suggestions,
which by definition are specialized to the current query, they have
to carefully read each suggested queries in order to decide whether
to click on them. Since the users scan result pages very fast, they
often skip the suggested queries as irrelevant content. By using a
limited number of broad query aspects as options for refinement we
seek to get the user accustomed to them. The users will then need
less attention to interpret the aspects; indeed, they may even come
to expect the aspects from the search engine – e.g., the “Reviews
and Ratings” aspect, when they search for a product name.
Our Contributions. Our primary contributions are fourfold. First,
we define broad query aspects and provide a clear problem formula-
tion based on optimizing a well-defined objective function. The for-
mulation directly models the search activity of users, specifically,
the query reformulations. To the best of our knowledge, ours is
the first attempt to use query reformulations for this purpose. Sec-
ond, we propose algorithms that extract these broad query aspects
by mining query reformulations in user session logs. Our proposed
algorithms seek to generate semantically coherent aspects which can
optimally cover the reformulations of the original queries. Third, we
provide an optimal algorithm to pick the k most relevant aspects for
any query, given a predefined set of latent query aspects generated
by any algorithm. This algorithm might be of independent inter-
est as well. Finally, we empirically demonstrate the accuracy of
our proposed method on a large real-world corpus of search logs: a
gain of 14% and 23% in terms of human-judged accuracy and click-
through data respectively, and around 20% in terms of consistency
among aspects predicted for “similar” queries.

2. RELATED WORK
Aiding web search users in finding relevant web pages is an active

area of research. Prior work in this field can broadly be categorized
into the following groups.
Query Suggestions. There is considerable literature on automat-
ically suggesting queries that are related to the user’s information
need. Jones et al. [17] learn a supervised model to select a sugges-
tion for a query from a list of candidates by using features that de-
pend on the query and the candidate. Cucerzan and Brill [11] present
an approach that ranks candidates by the conditional probability of
seeing them in the same session as the current user query. Vlachos
et al. [21] and Chien and Immorlica [8] operate on the assumption
that semantically related queries have similar temporal behavior of
query occurrences. There are also many query expansion techniques
that use pseudo-relevance feedback [5, 22] and click-through behav-
ior [3, 12].
Query Suggestions via Context. There is some work on personal-
izing the query suggestions to the searching history of the user. Cao
et al. [6] look at the past sequence of queries issued by the user while
making a query recommendation. In a similar work Boldi et al. [4]
solve an ATSP problem to obtain the sessionization of user history
and then use queries from the same session to bias query sugges-
tions. Chirita et al. [9] expand a user’s query with terms collected in
user’s profile to bias search results.
Concept Based Query Suggestions. The above methods all find
queries related to the current user information need, and this can be
error prone if the information need is rare or novel. A possible so-
lution is to aggregate queries into concepts which are then used to
map related queries to the user’s current information need. Fonseca
et al. [13] use association rule mining to fetch past queries related to
the current query, which are then clustered via locating cycles in a
specially constructed query-relations graph. These clusters are then



shown to the user, who picks the cluster that is to be used to expand
the current query. Cao et al. [6] recommend queries by first clus-
tering them into concepts in an offline process. There has also been
significant work on assigning labels to query clusters; for example,
Pasca and Van Durme [18] use correlations in query logs and web
documents to create and label query clusters. Finally, Fuxman et
al. [14] use a pre-defined taxonomy of concepts to learn a mapping
from query to concept. This mapping is then used to recommend
related queries in the context of sponsored search.
Differences in Our Work. As mentioned in Section 1, we discover
broad latent query aspects from reformulation activity in user ses-
sions. Unlike query expansion [3, 12], these query aspects are de-
signed for situations when there is no one dominant latent intent to a
query. In contrast to query suggestions [8, 11, 17, 21], query aspects
are global, applicable to many classes of queries, and can also be
used to design specialized search services such as vertical searches.
These aspects must in some sense be orthogonal to the topical nature
of queries. Moreover, in our approach we seek to find aspects that
users often neglect to include in their queries. We accomplish this
by explicitly modeling the query reformulations in search sessions.
This is different from all the works mentioned above.

3. OUR APPROACH
In the Introduction, we motivated the use of query reformulations

in search sessions for extracting broad latent query aspects. In this
section, we first present a concrete formulation of our problem. The
end result is an encoding of our problem in a precise objective func-
tion. We then give algorithms that directly optimize this objective
function to discover broad latent aspects and to pick appropriate as-
pects in response to future queries.

3.1 Problem formulation
Let A denote a set of broad latent query aspects. Each query

aspect ai is in turn a set of query qualifiers – terms that are added
to an original query during reformulations. Note that A does not
have to cover the set of all query qualifiers exhaustively or mutually
exclusively; A need not be a partitioning. However, primarily for
the purposes of efficiency as shown later, we assume in our work
that query aspects are disjoint.

The problem setting can now be stated compactly as follows. Our
system discovers and maintains a set A of N query aspects. On
receiving any original query q at run-time, it select k out of the N
aspects and presents them to the user along with search results for
q. We want to (a) “cover” the set `(q) of expected qualifiers of q
as precisely as possible; the k query aspects must include most of
the qualifiers in `(q) but also exclude most extraneous qualifiers,
and (b) “cover” as many queries as possible from the search engine
workload.

The restriction on N query aspects is due to costs associated with
discovering and maintaining query aspects in a large search system,
while the restriction on k query aspects derives from constraints on
the real-estate on the search results page as well as user’s attention.
Its easy to see that these restrictions result in a trade-off between the
two requirements of our approach: to cover as many as queries as
possible, as precisely as possible.

This trade-off needs to be encapsulated in a single reward func-
tion, which will then let us compare different solutions (each solu-
tion being a set A of N query aspects). Following the literature on
information retrieval, natural choices for such a reward function are
the precision and recall of the solution. The precision of a query
aspect ai is the fraction of its qualifiers that it shares with `(q):
prec = |ai ∩ `(q)|/|ai|. The recall is the fraction of qualifiers in
`(q) that are present in ai: rec = |ai ∩ `(q)|/|`(q)|. Precision

rewards query aspects with few extraneous qualifiers, while recall
rewards aspects which cover most qualifiers of the original query.
Together, these are exactly our two desiderata. A standard way to
combine them is via the F-measure, which is the harmonic mean of
precision and recall [2]:

F-measure =
2

1
prec + 1

rec
= 2 · prec · rec

prec + rec
. (1)

The F-measure ranges from 0 to 1, with 0 indicating no similarity
and 1 representing identical sets.

Now, we can define the goodness of a solution A as the F-measure
between the set `(q) of qualifiers of a query q and the union of the
k query aspects picked for it, summed over all queries in the query
workload Q and weighted by their frequencies n(q):

R(Q, A) =
X
q∈Q

n(q) · max
a1,a2,...,ak∈A

F
“
`(q),∪k

i=1ai

”
(2)

This reward function represents a trade-off between two advan-
tageous properties: it encourages “covering” as many qualifiers of
`(q) as possible, while penalizing for both qualifiers that are not
covered, and overly broad query aspects. Note that the latter is a
problem with objective functions based on several other common
similarity measures: e.g., neither precision-at-k nor cosine similar-
ity penalize for uncovered qualifiers. The two properties cannot be
simultaneously satisfied to the maximum possible extent because of
constraints on both the number of total aspects N and the number
of aspects k that can be used to “cover” any one query, making the
trade-off necessary.

While the standard F-measure indeed has several desirable prop-
erties, it does not take into account the relative frequencies of ele-
ments in the sets being compared. This is important in our setting:
the query aspects presented in response to a query should preferably
be biased towards the most frequent reformulations of that query.
For example, suppose an original query, say “mariah carey”, has
three qualifiers: pictures (weight 100), wallpaper (weight 10), and
photoshoot (weight 5). This tells us that a user querying for “mariah
carey” is 10 times more likely to be looking for simple pictures than
for desktop wallpapers. Then a query aspect consisting of pictures,
wallpaper, and photoshoot, each weighted equally, does not provide
a user with an appropriate choice for reformulation. A user inter-
ested in, say, pictures will only have a 1/3 chance of finding this as-
pect relevant. Ideally, the qualifiers in an aspect should be weighted
with exactly the same relative weights, i.e., 100 : 10 : 5. However,
the F-measure in Equation 1 will score both the equal-weight and
biased-weight versions of this aspect identically, considering both
to perfectly cover the original query. Hence, it is crucial for us to
use a similarity function that properly handles weights, and this is
what we discuss next.

Weighted F-measure. We must first extend the notation to the case
of weights. Slightly abusing notation, we will use `(q) to represent
not only the set of qualifiers of query q but also the vector of weights
of those qualifiers. Weights are non-zero only for qualifiers that
appear in the historical data with q. Similarly, let ai ∈ A now
represent the weight vector for a query aspect. We desire a similarity
function between `(q) and ai when both are weighted.

To achieve this, the trade-off represented by Equation 1 must now
be recast in terms of weights. We accomplish this by positing that
a suitable weighted similarity measure should possess the following
two characteristics: (P1) An ai that has high weights exactly on the
terms on which `(q) also puts high weights should achieve a high
similarity score, and (P2) if we take a qualifier that exists in `(q) but
not in ai, and add it to ai with a very small weight ε, the similarity



should necessarily increase. Of course, if this new addition were to
be weighted too heavily in ai, then the similarity score may either
increase or decrease, depending on its relative weight in `(q).

Keeping these properties in mind, we propose extending the F-
measure to the weighted case when ai and `(q) are vectors.

prec =
ai · `(q)
ai · ai

rec =
ai · `(q)

`(q) · `(q)

F (`(q), ai) = 2 · prec · rec
prec + rec

= 2 · ai · `(q)
‖ai‖2 + ‖`(q)‖2

(3)

Thus, the set size computations of Equation 1 are replaced by dot
products between vectors.

It is clear from Equation 3 that F (., .) attains high values when
items in both sets have equal weights, and low values when the
weights diverge, thus satisfying property (P1). It can be shown that
(P2) holds as well, as long as ai is non-empty. The only remaining
question is the setting of weights for the qualifiers in ai and `(q).

Weighing qualifiers in `(q) and ai. The weights on the two sets
serve different purposes and this dictates useful ways of setting them.
Our goal is to ensure that for a user issuing query q, the system sug-
gests aspects that match what we expect to be reformulations for q.
Hence, a natural value for the weight of a qualifier m in `(q) is the
number of times we expect to see m in a reformulation of q (we
can estimate this from historical data); we call this the conditional
frequency. On the other hand, when the system suggests an aspect
ai in response to a query q, the user’s perceived relevance of ai to q
depends on the qualifiers that together comprise ai. The weight of a
qualifier l in ai should reflect the degree to which it dominates other
qualifiers in ai. We estimate this weight as the global frequency of
seeing l as a qualifier in any reformulations over the entire historical
data; we call this the global frequency of l.

In this weighting scheme, for the F-measure to make sense, the
weights on members of ai and `(q) must be on the same scale.
This is unlikely to be the case since global frequencies will tend
to be much larger than conditional frequencies. An obvious way to
ensure similar scales is to normalize the weights in a set to sum
to 1. This fix, however, runs afoul of property (P2) mentioned
above. To illustrate this, let us consider the previous example –
the query “mariah carey”, with set `(q) of qualifiers being pictures
(unnormalized weight 100), wallpaper (unnormalized weight 10),
and photoshoot (unnormalized weight 5). Then a query aspect ai

consisting of pictures (unnormalized weight 10) and wallpaper (un-
normalized weight 1) would score well since the highly weighted
qualifiers of the original query are also highly weighted in the query
aspect. However, if we now add photoshoot to our query aspect ai,
then the normalization would reduce the relative weights for pic-
tures and wallpaper, and by implication their contributions to the
similarity score. This could lead to an overall decrease in the simi-
larity between `(q) and the new ai.

To bring the weights to the same scale while satisfying both (P1)
and (P2), we perform the following normalization: For each q, we
scale all weights in `(q) by a factor specific to q such that, after
normalization, the squared 2-norm of `(q) (i.e., ‖`(q)‖2) equals the
sum of squares of the global frequencies of the members of the set
`(q). For example, if `(q) has no overlaps with the qualifiers of any
other query, then no scaling would be performed, which is intuitive
since the conditional frequencies in this case are the global frequen-
cies. Also, if there is a query aspect ai with exactly the same terms
as `(q), then it would have the same frequencies as `(q) as well, so
the vectors ai and `(q) would be identical and the similarity mea-

Measure αX βX fX(Y ) gX(Y )

F (Eq 5) 0 ‖X‖2 |X · Y | ‖Y ‖2

Jaccard [20] 0 |X| |X ∩ Y | |Y \X|
Ext. Jaccard [7] 0

P
j Xj

P
j min(Xj , Yj)

P
j max(Yj −Xj , 0)

Table 1: Similarity measures as special cases of Equation 6

sure F (`(q), ai) would achieve its highest possible value of 1. It
may easily be seen that with this normalization scheme, F (., .) sat-
isfies both desired properties.

Finally, we can formally state our problem in its entirety:

Problem 1: Find a set A of N query aspects so as to maximize

R(Q, A) =
X
q∈Q

n(q) · max
a1,a2,...,ak∈A

F
“
`(q),∪k

i=1ai

”
(4)

where,

F
“
`(q),∪k

i=1ai

”
= 2 · prec · rec

prec + rec
= 2 ·

Pk
i=1 ai · `(q)Pk

i=1 ‖ai‖2 + ‖`(q)‖2
(5)

‖`(q)‖2 =
X

m∈`(q)

global-freq(m)2 ∀q ∈ Q

The above problem formulation essentially involves two prob-
lems: (1) find the best set of query aspects A, and (2) for any given
query, pick the best k query aspects from the set A. Since the solu-
tion to the first problem depends on our ability to solve the second,
we present, in Section 3.2, an algorithm for the second problem and
prove its optimality. This algorithm, combined with a clustering
technique, then leads to our proposed solution for the first problem,
which is discussed in Section 3.3.

3.2 Picking the best k aspects
Given a set A of query aspects, and a query q, how should we pick

k aspects a1, . . . , ak ∈ A so as to maximize the similarity measure
F

`
`(q),∪k

i=1ai

´
? We present a general solution that can maximize

any similarity function of the form

hX(Y ) =
αX +

P
i fX(yi)

βX +
P

i gX(yi)
, (6)

where Y = {y1, . . . , yk} (k fixed) is a set that must be picked
from a universe Y of possible items, αX and βX are constants with
βX > 0, the function gX(.) is non-negative, and all functions and
constants are indexed by an X that represents any known and rele-
vant data. The connection to our problem of picking query aspects
is clear: The universe Y corresponds to A, with each yi correspond-
ing to some weighted query aspect. Similarly, X corresponds to the
weighted `(q), which is known. When all the aspects are mutually
exclusive, our F (., .) objective function falls under this framework,
along with several other similarity functions (Table 1). Thus, in ad-
dition to being applicable to our particular problem, the solution to
Equation 6 might be of independent interest as well.

The difficulty in solving this problem stems primarily from an
important, and somewhat counter-intuitive, consequence of Equa-
tion 6: The solution for large k need not be a superset of the so-
lution for small k. Consider the following example. Let αX = 0,
and βX = 10. Let Y = {y1, y2, y3} with the fX(yi) = (1, 1, 2)
and gX(yi) = (1, 1, 10) for i = {1, 2, 3}. Now, if k = 1, the opti-
mal Y ∗ = {y3}, since this yields the objective value hX({y3}) =
(0 + 2)/(10 + 10) = 1/10 while hX({y1}) = hX({y2}) =
(0 + 1)/(10 + 1) = 1/11 < hX({y3}). However, if k = 2, the
optimal Y ∗ = {y1, y2}, since hX(Y ∗) = (0 + 1 + 1)/(10 + 1 +
1) = 1/6, while the other solutions give smaller objective values:
hX({y1, y3}) = hX({y2, y3}) = (0+1+2)/(10+1+10) = 1/7.



Algorithm 1 Pick-k
1: input: set size k, universe of items Y , α, β, f(.), g(.)
2: Y ← {φ}, n← k, α′ ← α, β′ ← β
3: while n > 0 do
4: M ←

n
arg maxs

α′/n+f(s)
β′/n+g(s)

o
(s ∈ Y \ Y )

5: If |M | > n, then keep any n elements in M and throw away the rest
6: Y ← Y ∪M
7: α′ ← α′ +

P
m∈M f(m)

8: β′ ← β′ +
P

m∈M g(m)

9: n← n− |M |
10: end while
11: output: picked elements Y ⊆ Y

This shows, among other things, that dynamic programming meth-
ods would not work for this problem. The set cover problem has a
similar flavor, but it requires all elements in the given set to be cov-
ered and is thus NP-Complete, whereas our formulation allows for
some elements to be left uncovered. This fact, along with the special
structure of Equation 6, allows us to optimally solve our problem in
polynomial time.
Algorithm Description. Algorithm 1 presents the Pick-k algorithm
for picking the set of elements Y from Y . Since X is known in
any instance of the problem, we drop the subscript from all terms
in the interests of clarity. Starting from an empty set Y = {φ},
our proposed algorithm proceeds step by step, adding items from Y
to Y in a greedy manner. However, the function that is maximized
in each iteration keeps changing. The heart of the algorithm is in
step 4, where the best items in each iteration are picked according
to a function that depends on the number of elements n yet to be
picked. Typically, there will only be one best element in M , though
the general version presented in Algorithm 1 can handle ties as well.
The time complexity of the algorithm is O(k|Y|) since there are k
iterations, and all |Y| items must be considered in step-4 of each
iteration. For Problem 1, this becomes O(kN), where N is the
number of query aspects.
Proof of Optimality. We need to prove that Algorithm 1 picks the
optimal Y ∗ = arg maxY h(Y ). Here, we provide a proof sketch,
with the full proof being deferred to the appendix due to lack of
space2.

For ease of exposition, assume that there are no ties in step 4 and
each iteration adds only one element to Y (the proof can be easily
extended to cover that case of multiple additions per iteration).

The algorithm maximizes Equation 6 by solving a sequence of
sub-problems. Suppose that the set Y ∗

(k−n) = {y∗1 , . . . , y∗k−n} is
known to be a subset of Y ∗ of size k − n. Now, for any set W ⊆
Y \ Y ∗

(k−n) such that W has exactly n elements, we use Equation 6
to get:

h(Y ∗
(k−n) ∪W ) =

α +
P

y∈Y ∗
(k−n)

f(y) +
P

w∈W f(w)

β +
P

y∈Y ∗
(k−n)

g(y) +
P

w∈W g(w)
(7)

Let W ∗ = arg maxW h(Y ∗
(k−n) ∪ W ). Now, we can define the

following sub-problem:
Problem 1’: Given the 4-tuple (Y ∗

(k−n), α, β, n), find any one ele-
ment w∗ ∈ W ∗.

Next, we relate the solution of the sub-problem to the optimal
solution Y ∗.

LEMMA 1. w∗ ∈ W ∗ ⇒ w∗ ∈ Y ∗

2The appendix has been submitted as supplementary material,
and is also available online at http://www.cs.cmu.edu/
~deepay/AspectsAppendix.pdf

LEMMA 2. In Problem 1′, the 4-tuple (Y ∗
(k−n), α, β, n) and the

4-tuple
„
{φ}, α +

P
y∈Y ∗

(k−n)
f(y), β +

P
y∈Y ∗

(k−n)
g(y), n

«
are

equivalent.
The optimality of Algorithm 1 can now be proved in two stages.

First, assuming the correctness of our solution to each sub-problem,
we show that the sequence of sub-problems generated by steps 6-9
of our algorithm is correct. Second, we show that each sub-problem
is solved correctly (step 4). In the following, α′ and β′ refer to the
variables updated in steps 7-8 of Algorithm 1.

THEOREM 1. Assuming that step 4 of Algorithm 1 correctly solves
the sub-problem ({φ}, α′, β′, n), the algorithm returns the optimal
result Y ∗.

PROOF SKETCH. The proof is by induction on the number of it-
erations. Each iteration solves a particular sub-problem ({φ}, α′, β′, n),
which is equivalent to (Y, α, β, n) by Lemma 2. Here Y = Y ∗

(k−n)

is the current solution of step 6. Then, by Lemma 1, each iteration
yields a new element of Y ∗. The full proof is in the appendix.

THEOREM 2. Step 4 of Algorithm 1 correctly solves the sub-
problem ({φ}, α′, β′, n), i.e., the element s∗ picked in step 4 of an
iteration belongs to the optimal solution: s∗ ∈ W ∗.

PROOF SKETCH. We prove that if s∗ does not belong to W ∗,
then we can construct a new set Z which replaces an element of
W ∗ by s∗ such that h(Z) > h(W ∗), leading to a contradiction.
The full proof is provided in the appendix.

3.3 Generating the set A of query aspects
In the previous section, we proposed a method to pick the best

k query aspects for any given query. Now, we will present our ap-
proach for constructing the set A of N query aspects.

Construction of the set A must adhere to the central goals and
constraints of the problem formulated in Section 3.1. Recall that
only N total aspects can be stored by the system, and only k aspects
can be shown in response to a query. This leads us to construct a set
A in which query qualifiers are grouped together into broad aspects
so that only a few aspects can be used to cover a significant fraction
of the query workload. On the other hand, the goal of providing pre-
cise aspects to users prompts us to keep semantically distinct query
qualifiers in separate groups. This trade-off between coverage and
specificity of aspects leads us to propose a solution based on clus-
tering of query qualifiers.
Clustering query qualifiers. In our approach, each query aspect
is modeled as a cluster of “similar” query qualifiers. Two qualifiers
are considered similar if the corresponding sets of original queries
to which they tend to be added are similar. While any clustering al-
gorithm and similarity metric can be used within our framework, in
this paper we extend the well-known Star Clustering algorithm [1]
for this purpose. We chose Star Clustering as it has been shown to
be effective over many different datasets [1], and has several char-
acteristics that help it optimize our objective function of Equation 4,
albeit indirectly. Next we describe the extended algorithm, and then
discuss the reasons behind its success on our problem.

Algorithm 2 presents our extended version of the star clustering
algorithm. Each qualifier v in the historical data is attached to a vec-
tor, whose dimensions are the set of original queries Q, and whose
values are the frequencies with which v occurs as a qualifier for
each q ∈ Q. Pairwise cosine similarities are then computed be-
tween qualifiers (typically only the most frequent 10, 000 qualifiers
in order to reduce computation), and only those pairs with similarity
above a given threshold σ are retained. This creates a graph among



Algorithm 2 Modified Star Clustering
1: input: set of qualifiersV = ∪q∈Q`(q), qualifier frequencies L(v)∀v ∈
V , threshold σ, N

2: Create a graph G = (V, E) where V is the set of qualifiers, and E =
{(i, j)|cosSim(i, j) > σ}

3: n← 0, Left← V , A← {φ}
4: while n < N and Left 6= {φ} do
5: hub← arg maxv∈Left L(v)

6: spokes← {i|(hub, i) ∈ E}
7: star← {hub} ∪ spokes
8: A← A ∪ {star}
9: Left← Left \ star

10: n← n + 1
11: end while
12: output: set A of at most N query aspects

the qualifiers. Now, a query aspect is created out of the qualifier
that is most frequent (called hub) in the historical data, and all the
qualifiers connected to it (spokes). These nodes are deleted and the
process continues until N query aspects have been generated or the
set of available qualifiers becomes empty. Note that the set of as-
pects is mutually exclusive, but not necessarily exhaustive.

This is different from the original star clustering algorithm [1] in
two ways. First, the aspects are now forced to be mutually exclu-
sive, whereas in the original algorithm, only the hub nodes could
not belong to multiple clusters. This was done so that the Pick-k
algorithm could be used to efficiently pick the best query aspects
for any query. Second, the original star clustering algorithm picks
the highest degree nodes as hubs, whereas our approach uses the
frequency of occurrence in the historical data. Hence, qualifiers
picked as hubs are used for reformulating many different queries,
or for very frequent queries, or both. This biases results towards the
more important qualifiers; the query aspect stars built around such
qualifiers should be frequently applicable to queries drawn from the
query workload.

Empirical results in Section 4 demonstrate the strong performance
of Algorithm 2. This might appear somewhat surprising, given the
fact that the algorithm is not directly optimizing the objective func-
tion (Eq. 4). However, careful consideration of the algorithm shows
that it is indeed indirectly optimizing the objective. Two qualifiers
`1 and `2 are in the same query aspect a ∈ A iff they have high
cosine similarity to the hub qualifier `h, which happens iff both `1
and `h share many original queries, as do `2 and `h. But then, it is
quite likely that `1 and `2 also share most of these queries. Hence,
if a is among the best query aspects for such a query, then all three
qualifiers `1, `2, and `h contribute significantly to the numerator of
Eq. 5, and hence to the full objective function. Thus, the value of the
objective will tend to be high, even though it is not explicitly being
maximized. We can contrast this with other clustering algorithms
such as single-linkage clustering, where there is no reason for nodes
at opposite ends of the same cluster to have occurred for the same
original query — indeed, the reverse is to be expected. Thus, it is
the special structure of the star clustering algorithm that leads to the
good results observed empirically, and this is the reason why we
chose to extend the star clustering algorithm for our purposes.

Maximizing the objective directly. As noted above, star clustering
optimizes the objective of Equation 4 only indirectly. We propose
combining star clustering with a local search technique that directly
increases the objective. Starting with the result of Algorithm 2, local
search improves upon the solution in stages. In each stage, it finds
a qualifier which can be moved from its current query aspect to a
new one such that the total objective always increases. However, a
straightforward application of this idea is infeasible: even a single

local move could lead to a different set of top k query aspects being
chosen for each query (the max in Equation 4), and recomputing
these (using Algorithm 1) repeatedly would be very costly.

Our solution is based on the observation that the total objective
does not need to be computed in each step: if the objective in-
creases for a given assignment of k query aspects, it must necessar-
ily increase with the optimal assignment of k aspects for each query.
Hence, we first attempt to perform local moves without recomputing
the best k aspects per query and only when such moves do not im-
prove the objective do we perform the costly re-computations. This
gives significant run-time savings. The space requirements are also
low, as just k pieces of information need to be stored for each query
(typically, k ≤ 5). Should this become too large, we can work with
only a query sample drawn according to their frequencies in the his-
torical query workload.

4. EXPERIMENTS
The questions we want to answer in this section are: (a) How

does our approach perform in user studies and automated evaluation
as compared to baselines? (b) How does each component of our
overall approach affect the final accuracy? (c) How does the per-
formance of our approach change under different parameter settings
and constraints? To answer these questions we conduct experiments
on logs from real-world search engine traffic.

4.1 Experiment Design
We first describe our experimental design: datasets, evaluation

measures, and baselines.

Evaluation data set. The data was generated from U.S. search
query logs of a commercial search engine collected over a period of
two months. These logs were processed to extract query sessions,
as follows: For each day in the data set, the queries were grouped
by users3, ordered by time, and then broken up into sequences such
that no two successive queries in any sequence were more than 10
minutes apart4. Each such sequence was defined to be an user ses-
sion. While user session segmentation can be improved with more
sophisticated algorithms (e.g., [16]), this simple low-cost heuristic
performed adequately for our purposes.

Given user sessions, we needed to extract query reformulations.
A query reformulation was defined as the following sequence of user
actions within a session: (1) user types an original query q, (2) user
does not click on any result, (3) user types another query q′ such
that q is a prefix of q′, with a word/phrase r added as the suffix to q,
and finally (4) user clicks on a result returned for the reformulated
query. Now, r is defined as a qualifier for the original query q. Note
that each session can yield multiple (q, r) pairs.

As a final step, the (q, r) pairs were split into a training set, de-
rived from the first month of our search logs, and a testing set, de-
rived from the first week of the second month’s query logs. For both
sets, all occurrences of (q, r) pairs were aggregated to yield triples
of the form (q, r, count). All our experiments were run on this pro-
cessed data.

From the logs in the training set, we selected the top 10,000 most
frequent qualifiers (i.e., r) and their triples for constructing the set
A of N query aspects. This serves to reduce both the computa-
tion complexity and the noise in the data, since qualifiers with low
frequencies are too unreliable to be considered for broad query as-
pects. We used the logs in the test set to automatically evaluate the

3All user information such as user-IDs or IP addresses were re-
moved.
4The 10-minute interval was picked after some exploratory data
analysis; our methods can use any time interval.



performance of our approach. In order to get robust ground truth, we
selected from the test set those original queries (i.e., q) whose ac-
cumulated counts of qualifiers are greater than 400; there are about
500 such cases. Each test case corresponds to a unique query, with
its attendant qualifiers and frequencies.

Competing approaches and baselines. We compared two config-
urations of our approach against two baselines. In the MODSTAR
configuration we obtain aspects A using the Modified-Star cluster-
ing procedure given in Algorithm 2 and employ Algorithm 1 to pick
top k aspects from A for each test-set query. Our LOCSEARCH con-
figuration is MODSTAR plus the use of the local search procedure
in constructing A.

The first baseline, which we call ORGSTAR, employs the original
Star clustering approach [1] to construct the final set of aspects A.
In addition, the top k aspects to show to the user in response to a
query are picked using Algorithm 1, as in MODSTAR.

As an additional point of reference, we consider a solution that
has one query qualifier per aspect (BASELINE) and uses Algorithm 1
to pick the optimal set of k aspects to show to a user. The set
of aspects A is constructed by picking the N most frequent single
keywords in the historical data. Despite the seeming simplicity of
BASELINE, it can be shown that, for any query q whose qualifiers
`(q) do not overlap with those of other queries, Algorithm 1 sim-
ply picks from among these N keywords the top k ones that occur
most frequently in `(q). Also note that as N grows large, the query
aspects picked for each query are more and more tuned to that par-
ticular query and its qualifiers, yielding query suggestions [11] for
that query in the limit. The fact that BASELINE is only a special
case of our framework demonstrates its flexibility: At one end, we
get broad multi-keyword query aspects that are globally optimized
over the entire query workload, and at the other end, we can get
locally optimal single-keyword query suggestions.

Evaluation criteria. We evaluated our approach using three differ-
ent measures that measure orthogonal aspects of a user’s experience
with our system.

First we performed a manual post-hoc evaluation of the accuracy
of the predicted aspects. The ground truth for this evaluation was
obtained in a user study. Two human judges were each presented
with 250 queries and their top 3 predicted aspects, and asked to rate
the “goodness” of the individual aspects. Each aspect in a set of k
aspects was rated individually as “good” if (a) the words and phrases
belonging to the aspect were judged to form a coherent set, (b) the
aspect was judged to be relevant to the query, and (c) the aspect
was judged to be distinct from the other aspects. The output of our
approach (LOCSEARCH) and BASELINE were judged this way, but
the source of the predicted aspects was hidden from the judges. For
uniformity of presentation, each aspect was given a name: For LOC-
SEARCH, the qualifier with the highest global frequency in the clus-
ter was used as the aspect name, while for BASELINE, each aspect
contained only one qualifier, which was used as the name. Using
this data we define ACCURACY of an approach as the fraction of its
predicted aspects that received “good” ratings.

The second relevant question we evaluated was: Are the predicted
aspects consistent across similar queries? For example, we would
like all queries related to, say, places and locations, to yield the same
set of aspects and thus provide a consistent and predictable user ex-
perience. To measure this, we manually clustered the queries into
11 major semantic groups (plus one group for queries that did not
fit into these categories) and computed the entropy of the predicted
aspects in each group. Low ENTROPY in a query group implies that
the set of predicted aspects is mostly the same, and is thus an indi-
cator of consistency. Table 2 shows these 11 groups of queries.

ACCURACY and ENTROPY measure the precision and consis-
tency of aspect predictions respectively. However, as pointed out
in [11], it is difficult for a judge to accurately rate query sugges-
tions without access to the context and task information inherent in
a search session; the same is the case with judging predicted as-
pects. As a third measure of performance, we used click-through
information to further validate the results obtained via the above
measures. Our automatically obtained test data is in the form of
triples (q, r, count), which reflect the number of times that users im-
prove their query by appending r to query q. For any query q if
we recommend aspect r with a high count, more users benefit from
this recommendation. Thus we need to consider the actual count
for a qualifier r in the evaluation. In Section 3.1 we showed how
weighted F-measure captures the notion of usefulness of an aspect
for a user query. In addition the F-measure in Equation 5 can take
the actual count into account. Hence, in our experiments, we use
the following two metrics: F@1 (weighted F-measure for the top
recommended aspect) and F@3 (weighted F-measure for the top 3
recommended aspects). The normalization of qualifier sets `(q) and
aspects ai are described in detail in Section 3.1.

4.2 Performance Comparisons
In this section, we compare the performance of different ways

of recommending aspects. We first compare our proposed LOC-
SEARCH against BASELINE by manually evaluating the predictions
of both. The results will demonstrate the superiority of the former
in terms of both accuracy and non-redundancy of predicted aspects.
Then we will present comparisons based on F@1 and F@3, which
replicate these results, and also show that LOCSEARCH performs
better MODSTAR and ORGSTAR.

For all these methods, we set the number of aspects to N = 100
and use Algorithm 1 to optimally pick aspects for each query. For
ORGSTAR and MODSTAR, we set the similarity threshold to σ = 0.25.

Post-hoc manual evaluation. The manual evaluation was performed
as a user study described in detail in Section 4.1. Averaged over
all the aspects predicted for all the queries judged, the ACCURACY
values for LOCSEARCH and BASELINE were 0.804 and 0.702 re-
spectively. This indicates that LOCSEARCH achieves a 14% im-
provement over BASELINE in terms of ACCURACY. The two judges
agreed with each other 90.5% of the times indicating that accu-
racy of LOCSEARCH approaches the upper-bound imposed by inter-
rater agreement. Furthermore, for LOCSEARCH, at least 1 out of
the 3 predicted aspects was deemed “good” a remarkable 98.4% of
queries; all 3 predicted aspects were considered “good” 52% of the
time. While BASELINE had a similar fraction of queries with at least
one good prediction, only 28.6% of the queries elicited 3 good as-
pects. This is because (a) BASELINE can store only N = 100 query
qualifiers, which is not enough, and (b) BASELINE often predicts
redundant aspects, such as pics and photos.

The ACCURACY values for LOCSEARCH and BASELINE, bro-
ken down across query groups, are presented in Table 2; significant
differences between the approaches are in bold. As we can see,
LOCSEARCH significantly outperforms BASELINE in most query
groups. Place/Location and Male-Celebrities are the two groups
of queries where BASELINE outperforms LOCSEARCH. This is
because these groups contained many queries that tended to have
highly popular individual qualifiers that were not shared with other
queries. For instance, while the location queries tended to have
broad aspects such “maps” they also tended to have very popular
specific qualifiers, like “cricket” for the query “india”. Attempting
to automatically discover when narrow query suggestions are useful
in addition to broad aspects is a topic of further research.



Query category Accuracy Entropy
LOC- BASE- LOC- BASE-

SEARCH LINE SEARCH LINE

Companies with 0.62 0.62 3.59 3.627
mostly online services
(e.g., flickr, aol, bbc)

Companies with offline 0.64 0.61 3.147 3.165
services including stores

(e.g., walmart, fedex)
Products mostly 0.75 0.57 2.642 2.246

sold/used/obtained online
(e.g., photoshop, "get movies")

Products mostly 0.70 0.71 2.864 3.361
sold/used/obtained offline
(e.g., bmw, tattoos, cars)
Movies/Events/Shows 0.79 0.72 2.735 2.884

(e.g., nascar, "kentucky derby")
Game related queries 0.94 0.73 2.471 2.723

(e.g., sims, "gta 4", psp)
Showbiz characters 0.86 0.67 2.474 2.734

(e.g., spongebob, batman)
Female celebrity names 0.86 0.69 1.894 2.331

(e.g., "paula abdul", "madonna")
Male celebrity names 0.62 0.78 1.94 2.354

(e.g., "tom cruise", "m jordan")
Place/Location 0.56 0.67 2.047 2.282

(e.g., "las vegas", mexico)
Adult 0.90 0.78 2.057 2.815

None of the above 0.80 0.71 N/A N/A

Table 2: Evaluation of LOCSEARCH versus BASELINE: LOC-
SEARCH has higher accuracy in predicting relevant aspects for a
given query, and also better consistency (lower entropy) among
aspects predicted for queries from the same query group. The
last class is not used in entropy experiments since it is not a sin-
gle semantic group.

Consistency of aspect predictions. As mentioned in Section 4.1
we would like similar queries to provide a consistent and predictable
user experience. Table 2 lists the ENTROPY values for LOCSEARCH
and BASELINE across the different query groups. As is evident,
LOCSEARCH performs better than BASELINE on almost all query
groups. In the case of some groups such as Adult and Male-Celebrities,
the ENTROPY values are reduced by huge amounts, 24% and 18%
respectively. In fact, the only reason the reductions in entropy are
not more dramatic is because the entropy of aspects suggested by
BASELINE is kept artificially low by redundancies in the predicted
aspects. This is also the reason why BASELINE outperforms LOC-
SEARCH for the Online-Products category: BASELINE always pre-
dicts both “download” and “downloads” resulting in a low ENTROPY
value. An interesting observation is that low ENTROPY values do
not always indicate high user satisfaction. This is shown by the
Place/Location and Male-Celebrities groups of queries where LOC-
SEARCH outperforms BASELINE in terms of ENTROPY but lags
behind in terms of ACCURACY. Only ENTROPY and ACCURACY
taken together give the complete picture.

Evaluation on click-through data. The hardness of our problem
imposes limitations on the range of observable F-measure values:
A high F-measure can be achieved only if the qualifiers of a large
set of queries can be covered by picking only up to k = 3 aspects
from a set of only N = 100 total aspects. As this is unlikely to
be true in general, we need to establish a scale according to which
to judge the resulting F-measure values. The best way would be to
compare against the performance of the optimal N aspects, but we
have no way to find these. However, we can find the best possible
N single-keyword aspects by picking the N query qualifiers that
occur most frequently in the test set. Even when the ground truth on

Figure 1: Performance comparison on F@1 and F@3.

Top word Other top words Example
in aspect in aspect query
pictures pics photos photo bmw

download downloads freedownload downlod photoshop
video videos “video site” playlists “paula abdul”
lyrics lyric “song lyrics” titles madonna
games game “rpg games” play spongebob
movie moive “movie trailer” movies batman

Table 3: Top keywords of the most frequent aspects, and exam-
ple queries for which they are predicted.

the test set is known to the aspect selection algorithm, the maximum
possible F-measure was found to be only 0.262. In the following, all
reported F-measure values are normalized relative to this maximum
value, and we call this the Normalized F-measure.

Figure 1 shows the results of BASELINE, ORGSTAR, MODSTAR,
and LOCSEARCH at F@1 and F@3. Just as in the manual evalua-
tion, LOCSEARCH outperforms BASELINE by a margin of 23% on
F@1 and 11% on F@3. We also see that the clustering algorithm
significantly affects result quality: Our proposed MODSTAR clus-
tering performs much better than ORGSTAR, because it takes the
qualifier frequencies into account, which biases the aspects towards
the more important and common qualifiers. For example, in MOD-
STAR, the three frequent keywords “review,” “reviews” and “rating”
form a single aspect. However, ORGSTAR does not generate this
aspect since this cluster is too small and none of the three keywords
has a high enough degree. In fact, ORGSTAR performs worse than
BASELINE, demonstrating that off-the-shelf clustering algorithms,
applied directly to this problem, are unlikely to yield good results.

Sample aspects. Table 3 shows the most important word, and other
top words, of the top 6 aspects discovered by our method, along with
example queries for they are picked. The aspects are clearly coher-
ent: All keywords in an aspect are semantically similar to the top
word. All synonyms, mis-spellings, and singular/plural versions of
an aspect keyword also belong to the same aspect. In addition, the
aspects are all distinctive, each aspect describing a well-defined con-
cept that is different from those of the other aspects. These aspects
are also what one would expect to be the most common reformula-
tions of Web queries. This demonstrates how our algorithms achieve
the right balance between query coverage and aspect specificity.

4.3 Parameter Settings
We now study the impact of different parameters on the perfor-

mance of our algorithms. In particular, we consider the effects of
the similarity threshold σ used in MODSTAR and LOCSEARCH, and
the limit on the number of query aspects N .

The similarity threshold σ. The MODSTAR algorithm (and conse-
quently, LOCSEARCH as well) merges query qualifiers into an as-
pect cluster using a similarity threshold parameter σ. In Figure 2,



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 F
-m

ea
su

re

sigma

Baseline (F@3)
ModStar (F@3)
Baseline (F@1)
ModStar (F@1)

Figure 2: The impact of similarity threshold parameter σ on
F@1 and F@3. When σ = 1, MODSTAR reduces to BASELINE.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50  100  150  200

N
o

rm
a

liz
e

d
 F

-m
e

a
s
u

re

Number of aspects N

ModStar (F@3)

Baseline (F@3)

ModStar (F@1)

Baseline (F@1)

Figure 3: The impact of number of aspect N on F@1 and F@3.
The curves flatten out by N = 100.

we investigate the sensitivity of the F-measure to σ. We also show
the result of BASELINE for comparison. As σ increases, fewer qual-
ifiers are considered to be similar, with each qualifier forming its
own cluster in the limit of σ = 1. Thus, σ = 1 is equivalent to
BASELINE, as can be observed from the F-measure results. On the
other hand, when σ is too small, each aspect becomes large and thus
less coherent, leading to low F-measure values. The best perfor-
mance is obtained when we set σ = 0.25. We use this value in all
other experiments.
Number of Aspects N . We also study the impact on performance
of the number of aspects N . Figure 3 shows the results of BASE-
LINE and MODSTAR when we vary N from 25 to 200, for both
F@1 and F@3. Clearly, when we enlarge the number of aspects
N , all the methods are improved. This is because with increasing
N , the set of aspects contains more query qualifiers and can thus
yield good predictions for more test queries. In addition, the aspects
themselves can be smaller and hence more coherent. The behavior
of LOCSEARCH is similar, and is not shown in the interest of clarity.
The plots flatten out by N = 100, implying that a relatively small
set of aspects can be sufficient to cover most web queries. This is
because the frequency with which any given aspect is recommended
in response to a test query is highly skewed: The “pictures” aspect
is recommended for over 40% of the queries while there are 60 dif-
ferent aspects that are recommended for less than 2% of the queries.
Thus, a total of N = 100 aspects provide adequate performance,
and this is the value we use in the other experiments.

5. CONCLUSIONS
A common problem with user queries is that they are underspec-

ified, or that they have senses that the user did not think of. A broad
latent query aspect is a set of keywords that succinctly represents
one particular sense, or one particular information need, that can aid
users in reformulating such queries. We extract these query aspects
from query reformulations obtained from user session logs; since

reformulations are exactly what the extracted query aspects are then
used for, historical query reformulations are particularly well-suited
for our problem domain.

We propose a new optimization-based formulation and algorithms
for extracting such broad latent aspects from historical user session
logs via an offline process. We also present an optimal and efficient
algorithm to pick, at run-time, the top k query aspects to be shown
to the user in response to her search query. Empirical studies on a
large real-world corpus of search logs show significant gains over
a strong baseline that uses single-keyword reformulations: a 14%
gain in accuracy of aspects as judged by human editors, around 20%
improvement in consistency among aspects predicted for “similar”
queries, and 23% gain in terms of weighted F-measure. All of these
demonstrate the importance and accuracy of the broad query aspects
that we find.

6. REFERENCES
[1] J. A. Aslam, E. Pelekov, and D. Rus. The star clustering algorithm for

static and dynamic information organization. Journal of Graph
Algorithms and Applications, 8(1):95–129, 2004.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley, New York, USA, 1999.

[3] B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. Query
expansion using associated queries. In CIKM, 2003.

[4] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna.
The query-flow graph: model and applications. In CIKM, 2008.

[5] C. Buckley and G. Salton. Optimization of relevance feedback
weights. In SIGIR, pages 351–357, 1995.

[6] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li.
Context-aware query suggestion by mining click-through and session
data. In KDD, 2008.

[7] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, 2002.

[8] S. Chien and N. Immorlica. Semantic similarity between search
engine queries using temporal correlation. In WWW, 2005.

[9] P. A. Chirita, C. S. Firan, and W. Nejdl. Personalized query expansion
for the web. In SIGIR, pages 7–14, 2007.

[10] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental
comparison of click position-bias models. In WSDM, 2008.

[11] S. Cucerzan and E. Brill. Extracting semantically related queries by
exploiting user session information. http://research.
microsoft.com/users/silviu/Papers/np-www06.pdf.

[12] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic query
expansion using query logs. In WWW, pages 325–332, 2002.

[13] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and N. Ziviani.
Concept-based interactive query expansion. In CIKM, 2005.

[14] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal. Using the
wisdom of the crowds for keyword generation. In WWW, 2008.

[15] B. J. Jansen, A. Spink, and J. Pedersen. A temporal comparison of
altavista web searching: Research articles. J. Am. Soc. Inf. Sci.
Technol., 56(6):559–570, 2005.

[16] R. Jones and K. Klinkner. Beyond the session timeout: Automatic
hierarchical segmentation of search topics in query logs. In CIKM’08.

[17] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In WWW, pages 387–396, 2006.

[18] M. Pasca and B. V. Durme. Weakly-supervised acquisition of
open-domain classes and class attributes from web documents and
query logs. In ACL, pages 19–27, 2008.

[19] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
very large web search engine query log. SIGIR Forum, 33(1), 1999.

[20] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, April 2005.

[21] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying
similarities, periodicities and bursts for online search queries. In
SIGMOD, pages 131–142, 2004.

[22] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma. Improving pseudo-relevance
feedback in web information retrieval using web page segmentation.
In WWW, pages 11–18, 2003.


