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Abstract—Consider a network of, say, sensors, or P2P nodes, or failure-rate environment (e.g., fire or evacuation systeh@re
bluetooth-enabled cell-phones, where nodes transmit infmation  might be very little time between detection of the event and
to each other and where links and nodes can go up or down. yhe gestruction of the node. We want to get the data off the

Consider also a ‘datum’, that is, a piece of information, like a d ickl ibl d dit th h th twork
report of an emergency condition in a sensor network, a natinal node as quickly as possible and spread It throug € networ

traditional song, or a mobile phone virus. How often should mdes SO that the information will survive.
transmit the datum to each other, so that the datum can survie Thus, informally, the problem can be stated as follows:

(or, in the virus case, under what conditions will the virus de Under what conditions can we expect the obiect or
out)? Clearly, the link and node fault probabilities are important P |

— what else is needed to ascertain the survivability of the dam? datu.m (e.g. Fhe Vi“_JS: or the pi-ece of information) to
We propose and solve the problem using non-linear dynamical survive or die out in a dynamic network?

systems and fixed point stability theorems. We provide a clesl- - \yq o4 jgentify two major cases. In the first, if the transmis-
form formula that, surprisingly, depends on only one additional ' ’

parameter, the largest eigenvalue of the connectivity maix. sion rate is not fast enough, the object will _eventually nifsa.
We illustrate the accuracy of our analysis on realistic and eal pear from the network. In the second case, if the transnmissio

settings, like mote sensor networks from Intel and MIT, as wé  rate is fast enough, then the datum will take over a significan
as Gnutella and P2P networks. part of the network and it will linger practically for ever.
l. INTRODUCTION Interestingly, there is a fascinating, and shaipase transition
| . " . between the two regimes. The next example illustrates the
n this work, we focus on the conditions under which

L . L . above concepts.
self-replicating object can survive in an unreliable netwo P

We assume a network (e.g. a sensor network) where initiaé@?(y‘/nm:':igure 1 ShO.WS an example of informaFion survival
some nodes have an object (e.g. a query, or some other dat?ﬁa 2D-grid graph withV = 10,000 nodes (Section IV has

Q

re details; the qualitative behavior of real graphs islain
for' each time instarit we plot the number of “carriers”, that is
O}“e number of ‘up’ nodes carrying the datum. We plot in linear
inear, log-linear, and log-log scales (plots (a-c), respely),
g%glustrate the qualitative difference in each regimeinds
Qur upcoming analysis, we chose three sets of parameters
ttings, so that we are below-, at-, and above- the thréshol

Nodes and edges are unreliable: edges may be up or do
and with some probability, nodes may die (e.g., run out
batteries); we also assume that they then resurrect witle s
resurrection rate (e.g., someone installs fresh bat)eritls

assume that a node loses the object in case of death
subsequent resurrection. (Our upcoming analysis could
easily modified to handle the converse assumption, but thi ) S o : :
is outside the scope of this work). With some transmissi S we can see, there is a significant, qualitative differance

probability, the object may be transmitted from a node th Fhavior under these three settings. Below the threshimdd, t

has it, to its neighbors; if the link and the neighbor are “up|,nformation dies ouexponentially quicklyThis is shown on

at the time, the copy is successful, figure 1(b), where the exponential function becomes a sttaig

For example, consider a cellphone network where the coff*® when“plotted”on log-linear scales. Exa_c_tly at th_e _1hodx$
nd by “exactly” we mean several significant digits!), the

munication between nodes is subject to loss (link failyre b ¢ : q | iallv followi
and nodes may go down (battery failure, shut down by us pmber of carriers decaysolynomially Tofowing a power

A . ’ . i
or moved out of range). Consider some static piece of infermlcaLW ¢ ?_nd b(?:tc))mlngha s:}ralgrr]]t Ignehon log Iogdscalesb (seef
tion, or “datum”, such as a mobile phone virus. As ceIIphonézégu,re (C))',, ove the threshold, the expecte number o
go down, the virus dies; however, when the cellphone is up aﬁarners stabilizes at a non-zero value, and the informatio

infected, the virus infects other phones. We seek the condit asts practically for ever, although the number of carrrasy
under V\'lhiCh the virus would die out and not become (%e less thanV, because of down-nodes, and not-yet-infected

epidemic. Conversely, we could have some information (sa
P y ( y1The datum will not necessarily take over the network conepfetsince

an emergency alert, or an .|mporta_nt “readmg_”) IN & SeNSRYdes are continuously dying and waking up, so there areyalwame nodes
network, and we want this information to survive. In a higkhat are alive but without the information.
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Fig. 1. Survival of information on a grid networlumber of carriers, over time, for a 2-D grid network wit=10,000 nodes, and for below, at and above
(our) threshold. Notice very different qualitative belaet below threshold, the information dies @axponentiallyquickly (line, in log-lin scales, of Figure

(b)). Exactly at threshold, the information is dying out apaver law (line, in log-log scales, of Figure (c)). Aboveekhold, the information survives,
practically for ever (all figures).

nodes. We give a precise definition of the term “practicatly f e Virus containment and anti-virus protection, where the

ever” in Section lII. “datum” is a virus: Here, welo want to drive the datum to
Our work provides an analytical model and identifies thextinction, and our approach allows us to decide how often to

fundamental conditions for which a datum will survive oguarantineeach node and for how long.

become extinct in a dynamic network. Although the problem e Social networks: News, rumors, and web-log (“blog”)

definition is deceptively simple, there is no known pradticadissemination, marketing and fad propagation, and mangmor

exact solution. The obvious one, discussed later in Setifion applications that seek to propagate and maintain infoomati

requires Markov Chains, and is prohibitively expensive: ifcan be handled under this framework.

computational cost is proportional ", where N is the ~ The remainder of the paper is organized as follows: Sec-

number of nodes. For referencgZ” is comparable to the tion Il surveys the related work. Section Ill describes our

number of electrons in the universe. Note that our model i@n-linear dynamical system approach, and gives the major

very general since it considers: (a) a dynamic network (witheorems and proofs. Section IV gives experimental results

failing links and nodes), (b) arbitrary topology, and (c)edo We conclude in Section V.

not make any assumption about the initial conditions.

Our Contributions:They are the following. IIl. RELATED WORK

1) Closed form formula:Based on our novel dynamical Graphs and sensor networks have attracted a lot of interest
system model, we derive a survivability condition thalately, for quick and efficient aggregation of informatidt0],
is extremelysimple, general and accurate. In fact, oufl1], for understanding “trust” and “distrust” in online cal
formula includes as a special case the SIS model oétworks [21], and in several other areas. With respect to ou
viral propagation (described later). problem, the closest related work has been in the areas of
2) Experimental validation of our modeExtensive simu- gossip-based protocols, epidemiology, and computer ggcur
lations on several realistic topologies (sensor from |ntel  a) Gossip-based protocolsSossip-based protocols have
MIT, and P2P networks like Gnutella) show that oubeen studied in both peer-to-peer as well as sensor and other
model is highly accurate in determining the behavior aid-hoc networks, where nodes may be up or down. The
the system and identifying the threshold for the phasate of node turnover in such networks is referred to as
transition. churn [40]; in high-churn settings, gossiping is often useful
Our work in perspectiveln addition to its theoretical as a mechanism for ensuring eventual-consistency of state i
merit, our survivability condition provides a starting pbi distributed networks despite unpredictable node popnati
for: (a) network design, and (b) interpretation of empiricaand connectivity.
or simulated results. First, network designers would use ou Thus, gossip-based protocols have been studied in high-
results to choose the node density, the network size, or #iaurn cases, for reliable multicast and broadcast proto-
datum retransmission frequency in order to save or drive ¢ols [33], [23], [36], [4], resource location [30], [38],ifare
extinction the datum, when these parameters are known dmtection [46], [39], [42], [7], [50], database aggregatjas],
under the control of the designer. Second, even when we diatabase and peer-to-peer replication [12], [10], and rérgu
not know or cannot control these properties, our fundanhentae stability of dynamic hash table-based peer-to-peer sys
relationships will help researchers interpret the obskrye tems [22], [40]. Information dissemination under memorg-co
simulated results. straints have also been studied [35]. Empirical and thaaet
Our work was initially motivated by sensor and P2P networktudies of gossip protocols include [5], [16], [33], [3029],
design, but it is also applicable in several other settings: [49].




TABLE |

However, they all assume that the initial infection or re- TABLE OF SYMBOLS
brpadcast rate is high enough that dyinglout is nota c_or_1tr¢rn. Symbol Description
this work we exactly quantify the conditions for survivatyil N Number of nodes in the network

b) Epidemiology:The epidemiology community has de- | 3;; Probability that linki — j is up

veloped the so-calle8IRandSISmodels [2] of infection. The | d: Death rate: Probability that nodedies
SISmodel Susceptible — Infective — Susceptjbie suitable | 7 Resurrection rate:
for, e.g., the common flu, where nodes may be infected, healed Probability that node comes back up

€9 ; 2 . y ’ i Retransmission rate:
(and susceptible), and infected again. Bi&model Suscep- Probability that node broadcasts
tible — Infective — Removégés suitable for, say, mumps, where | p;(t) Probability that node is alive at
a node, after being infected, becomes removed (with lifeeti time ¢ and has info
immunity). qi(t) Probability that node is alive at

. . o time ¢ but without info
The area of “interacting particle systems” is also remotely — pi(t) — q:(t) | Probability that node is dead

related: “particles” propagate over a simple network adirgy vi(t) Probability that node doesnot receive

to different processes; the one closest to our work is the info from any of its neighbors at time

“contact process” [24], [34], [13]. However, most previous| B(t), d(t) Probability column vectors

work in this area assumes networks with (a) infinite size, ang C'(¢) True number of carriers at time

(b) regular topologies such as line graphs and grids. c(t Estimated number of carriers at time
The approach we present here is based on the SIS model Qoo Number of carriers at quasi-steady-state

: . ) . 8 S The N x N system matrix

a node is “susceptible” to a data item when it is online and A The largest eigenvalue of

functioning normally; as nodes crash, they become “immunel s = I\ gl “Survivability score”

for the duration of their failure, and later become “susitégt

again when they are back online. Intuitively, the model we

focus on resembles an SIS model with random “quarantine”.

Our novelty is that we studgrbitrary graph topologies and in its memory (e.g., due to the periodic replacement of dead

we are the first to derive the survivability condition for bucbatteries). The symbols we use are listed in Table I.

cases. This system can be modeled as a Markov chain, where each

c) Computer security:There are numerous studies ofiode can be in one of three states: “Has Info”, “No Info” or

worm and virus propagation on the Internet [48], [32], [37];Dead”, with transitions between them as shown in Figure 2.

[43], [45], based on theSIS SIR and influencemodels of The full state of the system at any instant consistévouch

infection [31], [8], [1], [19]. Others have done detailedédasic States, one for each node. Thus, there Hesystem states.

studies of the spread of worms [37], [43], [44] illustratingTransitions out of the current system state depemigt on the

the exponential spreading predicted by SIR and SIS modeds[rent state and not on any previous states; thus it is adwark

with the entire susceptible population quickly becomedtde chain.

and then slowly being “removed” as patches are applied.There is an extremely subtle point here: observe that there

Epidemiological models have again been used in developiisgan absorbing set of states (where no node is in “Has Info”)

good quarantining strategies for scanning worms [17]. Worand that this set can be reached from any starting state., Thus

propagation has been studied under special cases, such dbdninformation will die out with probabilityi as time tends

email networks [51] and on the IPv6 Internet [3]. Mathemgiltic to infinity (see [6]). However, from a practical point of view

modeling of propagation behavior [47], [18] has providewhen the parameter values are within a particular region of

some answers on “epidemic thresholds”; we show that oifre parameter space, this extinction happens quickly. Defin

current work includes these results as a special case. this region in the parameter space is exactly the goal of our
work. Outside this region, the time to extinction can be very
Il. PROPOSEDMETHOD long. For example, consider the case of the SIS model, which

We are given a network oV nodes (sensors, computerss a special case of our problem as we show in Corollary 2
or people) andE directed links between them. For ease ah Section IlI-D: even for a simple line graph, under the SIS
exposition, we assume discrete time-steps of gizewhere model and with above-threshold condition, the expectee tim
At is vanishing At — 0). The continuous-time versionto extinctionT growsexponentiallywith the size of the graph
is omitted for space, because it gives identical surviigbil N. Specifically,r — c-e” as N — oo [14]. As an arithmetic
results. example, suppose that we are above threshold, on a network

Within a At time interval, each nodeé has a probability with N=1000 nodes, and that the time-tickds = 10~ (the
r; of trying to broadcast its information, and each linkcycle time of a 1GHz processor). Then the expected time to
i — j has probability3;; of being “up”, and thus correctly extinction isO(e!®" x 107%) ~ 10*'7 years, while the age
propagating the information to noge Each node also has a of the universe is of the order of billiori (") years. In such
node failure probabilitys; > 0 (e.g., due to battery failure cases, the datum practically survives for “ever”.
of the sensor). Every dead nodehas probabilityy; of The question is: under what conditions does the information
resurrecting to the “up” state, but without any informatiosurvive for a long time, and when will the information die



1-9 Receives Info viO-9 we can approximate our setting with the following dynamical

system:
Lemma 1 (Dynamical system}he probabilitiesp;(¢) and
Prob q (1) q;(t) for nodei (i = 1,..., N) to be in state “Has Info” and

“No Info”, respectively, at time, are approximated by

Resurrected

v Pt = plt=1)x(1-3)
+qi(t — 1) % (1 —vy(t)) Vi, vt 1)
Ly, (e RO a(t) = ailt = 1) * (vi(t) - 5)

+Yi (1 —pi(t - 1) — qi(t — 1)) Vi, Vt (2)
Fig. 2. Transitions for each nodéfhis shows the three states for each node, ) B )
and the probabilities of transitions between states. wherew;(t) is the probability that nodé doesnot receive the

information from any of its neighbors at tinteand it is given
by

out quickly? LetC(¢) denote the expected number of carriers vi(t) =TG5, (1 — 7 Bup; (t — 1)) 3)
(nodes in “Has Info” state) at time In generalC(t) decays ) )
exponentially, polynomially or logarithmically (with erpted Proof: Starting from state “No Info” at time — 1, node
time to extinction comparable to or larger than the age of tfigan acquire this information (and move to state “Has Info”)
universe for large graphs), depending whether the systemfid receives a communication from some other node. et
below, at or above the threshold [13], [14], [15]. Figurea)1( ¥i(t) be the probability that node doesnot receive the
(c) illustrate these three cases. We focus on the fast g¢ixtmc information fromany of its neighbors. Then, assuming that
case, since many other works have looked at the rapid spré3@ neighbors’ states aiedependentwe use the transition
case (e.g., [37], [43)]). matrix in Figure 2 and apply it for each nodeand write
Definition 1 (Fast Extinction)*Fast extinction” (hence- down the probabilities of being in each state at timeiven

forth “extinction”, for brevity) is the setting where the mber the probabilities at time—1. Recall that we use time-steps of
of carriers C(t) decays exponentially with timeC(t) o« vanishing sizeAt, exactly so that the probability of two events
cte>1). happening within the same time-tick is vanishingly smatkl a

We shall use the term “survival” for the converse casfnUs we can neglect second- and higher-order terms. Eq. 2 is

where the time to extinction is astronomically high. We ghaflerived though similar reasoning. u
use the term “at the threshold” for the extremely improbable The reader may be skeptical about the impact of the
case when the number of carrigf§t) decreases as a poweiindependence assumption. However, as we show in Section IV,
law with time. Finally, we shall use the term quasi-steatiyfes the assumption (Egs. 1-3) leads to extremely accuratetsesul
for the situation when we are above threshold and numlifer all the real and synthetic networks we tried. In fact, the
of carriers seems stable, like the ‘above threshold’ case ddtted lines in Figure 1(a-c) all correspond to the estiomesi
Figure 1 for time-tick 200 and above. The number of carriergith the Dynamical Systerand the independence assumption,
C«» at the quasi-steady-state will be referred to esitlual while the black circles correspond to averages, after we run
carriers’. simulations; notice how close the results are.

We can now formally state our problem: Next, we discuss the properties of this dynamical system,

Problem 1: Giventhe network topology (link “up” proba- and specifically we study the condition for fast extinctiam o
bilities) 3;;, the retransmission rates, the resurrection rates this system.
~v; and the deathrateg (i=1...N,j=1...N)

Find: the condition under which a datum will suffer “fastB. Main Result

extinction”. . ) ” .
Our goal is to find the conditions under which we have “fast

extinction”. The high-level description of our approachhg
following: (a) We start from the Dynamical System equations

Solving this problem for the full Markov chain requiregEq (1)-(3)), (b) we show that it has a fixed point (namely,
3N variables and is thus intractable, even for moderate-sizetien the datum/virus is extinct), and (c) we find the condgio
networks. Exact values for the “fast extinction” threshatg under which this fixed point is “stable”. Under exactly those
unavailable even for simpler versions of this problem [18]. conditions, the system will quickly return to the extincitst

Our main contribution is an accurate approximation, using We present the details next. After appropriately manip-
a non-linear dynamical system of onliy variables. Let ulating the Dynamical System equations (described in the
pi(t) andg;(t) be the probabilities of nodibeing in the “Has extended version [9]), we get the so-callggstem matrixS,
Info” and “No Info” states at timet, respectively. Thus, the which is pivotal for the rest of the analysis. This is &nx N
probability of the node being dead i$—p;(t) —¢;(t)). Then, square matrix, defined as follows:

A. Main Idea



Definition 2 (System Matrix): The above result agrees with intuition: The survivabilify o
15 TR the datum increases with the connectivity 5, the retrans-
S = " ;_ J (4) Mmission rater and the resurrection ratg and decreases with
' riBiiy 5,  otherwise the death rate.
fori=1,...N,andj =1,...N. C. Lemmas and other results

Intuitively, the diagonal of the matrix has the terms- o, First, we show that the scenario with no information suriviva
which give the probability that-th node WI|! remam_allve. (pi(t) = 0) forms a fixed point of the dynamical system. Then,
The off-diagonal elements;; of the matrix contain the e show that below the threshold condition of Theorem 1, this
probability that node’ will be infected by nodej: %—115; IS fixed point isasymptotically stableinder small perturbations
the probability nodei is alive and without the information, (this is how we derived the condition in Theorem 1). Finally,
r;j is the probability thay transmits information and;; the we show that our threshold is insensitive to the startingesta

probability that the transm.ission will succeed. . below the thresholdp;(t) — 0 and thusC(t) — 0 expo-
Let |\, g| be the magnitude of the largest eigenvalue (ifentially quickly. Detailed proofs are provided in extedde
magnitude). version [9].

Definition 3 (Survivability score)The largest eigenvalue Before we give the formal version, we present the intuition.
s = |\, g| of the system matri¥' is defined as “survivability A dynamical system, like, e.g., a ball on a flat surface, has a

score” for the system. fixed point if it is at equilibrium there. The fixed point is dai
Let C(t) to be the expected number of carriers at titne to be stable (eg., a ball inside a spherical bowl, with nom-ze
according to this dynamical systerfit) = Zf\]:l pi(t). friction, resting at its bottom), if the system returns tatth
Theorem 1 (Condition for fast extinction)f the surviv- point, despite a small perturbation. The ball inside a bawl i
ability scores = |\, g| obeys a dynamical system with a few variables (2 polar coordinates
' for the ball, and a few more variables for its velocity vegtor
s=[A gl <1 In our case, we have 2¥ variables, thep;(t) andg;(t) for

each node. Our goal is to find the fixed point for our 2F-

then we have fast extinction in the dynamical system, that {gansional vector, given the transitions equations (Eg) 1
the expected number of carrie€s(t) decays exponentially 5nq study the conditions under which this point will be stabl

over ime. Definition 5 (Asymptotic Stability of a Fixed Pointh

Proof: The proof fqllows from Lemma 2 and Theorems 3ixed point P; is “asymptotically stable” if, on a slight
and 3. For the full details, see the extended version [9]hat tperturbation fromP;, the system returns t&; (as opposed
high level, the proof examines the stability of the fixed poir}o moving away, or staying in the neighborhood Bf but
of Egs. 1,2. The fixed point is the case where no node carrigs approaching it) [25].
the datum £;(¢) = 0 ¥i). A dynamical system has a stabléysthematically, this means that the Jacobian matrix of the

fixed point if the first eigenvalue of the Jacobian matrix aéystem, computed at poifiy;, has all eigenvalues smaller than
that point is smaller than 1. In our case, the first eigenvafue 1", magnitude [25].

the Jacobian matrix is exactly the same as that ofapgtem | oyma 2 (Fixed Point)The values
Matrix of Eq. 4.

Definition 4 (Threshold):We will use the term “below (pi(t) =0,q(t) = i )
threshold” whens < 1, “above threshold” whers > 1, and Vi + 0i
“at the threshold” fors = 1. for all nodesi, are a fixed point of Egs. 1-3.
The results above are very general, and, as we show via Proof: By substitution into Equations 1-3. ]

simulations, very accurate as well. Next, we examine oneTheorem 2 (Stability of the fixed pointJthe fixed point of
common special cases, to demonstrate the intuitive behaiemma 2 isasymptotically stabléf the system is below the
of the system. threshold, that iss = [\, | < 1.

Corollary 1 (Homogeneous reliable-link casdf:all nodes Proof: Omitted, for space (see [9]). The sketch of the
exhibit similar behaviory; = §,r; = r,v; = v for all 4, and proof is as follows: We compute th&V x 2N Jacobian of
B = [B;;] is a symmetric binary matrix (links are undirectedpur dynamical system, and request that the largest eigeaval
and are always up or always down), then the condition for fagtagnitude< 1. It turns out that this is exactly the eigenvalue

extinction is: of the N x N system matrixhat we defined earlier. [ |
A1 Theorem 3 (Insensitivity to the starting statd): we are
5(y+9) 5)/\1,3 <l ) below threshold{ = |\, g| < 1), then we have fast extinction

regardlessof the starting state.

Proof: The system matrixS can be written as = (I * Proof: See extended version of the paper [9]. -

(1—=0)+Bxr-vy/(y+0)) wherel is the N x N identity matrix. . _

From the properties of eigenvalues, we have tha = (1— D- Corollaries and Special Cases

0) +A.B xr-/(y+d) and, combining with Theorem 1, we Here we present some special cases and corollaries, and
have the proof. B show that the results agree with our intuition.



. L . TABLE I
Corollary 2: We include the SIS model of viral infection PARAMETER SETTINGS FOR THE DATASETS

as a special case.

Dataset threshold [}

¥ r S
Proof: The SIS model has only two states per node: “Has below 0.1 00101 0.90
Infection” and “No Infection.” In our model, if we increasee GRID at 0.01 1 0.004 ) 0.1} 1.001
resurrection ratey so that a “dead” node comes back “up” above 001 01 01 102
_ ey _ p below 01] 001] 01| 0091

very quickly, we can give the appearance of oty states: GNUTELLA | at 0.07 | 0.004| 0.1 || 1.003
“Has Info” and “No Info”, and thus mimic the SIS modei above 001] 00101 1.05
In fact, if the ratio of resurrection-vs-death ratg @ver 9;) below 0.1 0.01 101 0.96
) 1 e te i INTEL at 0.02 | 0.0006 | 0.1 || 1.0003
increases to infinity, and all death rates are the same, e fa above 0.01 0.01 | 0.1 1.33
extinction condition of Corollary 1 becomegsd -\ g < 1 below 0151 0.011 0.1 0.96
This is exactly the epidemic threshold condition for the SIS MIT at 0.05 | 0.0006 | 0.1 o1
above 0.01 0.01 | 0.1 1.88

model [47], [18].

Corollary 3 (P2P resilience):Consider astar network (one
hub and many satellite nodes) andiag network (nodes in
a circle) with the same number of nodads > 5. They have 1500 o9
similar number of edges\—1 for star, N for ring). However, £
the star network has higher higher survivability score, and the

2000 1000

f links.

1000

er
Number of links

Numl

gap widens with the number of nod@é. 500
Proof: [\ g |=VvN-1>2= |/\1,Bmg|' So, the “
star network has higher survivability score. | O ez o oe o8 1 U
This agrees with intuition: in thstar graph, the central node (a) INTEL link qualities (b)MIT link qualities

will have the datum/virus with very high probability, andhitl . _ S _
Fig. 3. Link quality distributions:Plots (a) and (b) plots the number of links

keep transm_lttlng_lt _tO the _Satelllt_e nodes, infecting _mwe versus link quality. Pairs of sensors which cannot comnataiavith each
of them, which will in turn infect it back later. In theng other have a link quality ob. While the INTEL distribution shows a broad
network, every infected node has only two neighbors/changange of link qualities, thé/IT distribution is very highly peaked.

to infect - if it fails, the system is one step closer to exting.

Again, we highlight the fact that thetar network outperforms

the ring on survivability, despite the fact that it is sparser by e INTEL: A 54-node sensor network observed over a period

one edge. of 33 days [27]. The nodes are Mica2Dot sensors collecting

time-stamped topology information once every 31 seconds.

The data was collected using the TinyDB in-network query
To verify our assumptions, we run a set of simulatioprocessing system, built on the TinyOS platform. The link-

experiments on several real and synthetic networks. We sho probabilities3;; were estimated from the collected data.

that The nodes were deployed in a lab with a rectangular shape

1) Our Equations 1-3 accurately track the true dynami@Qd “soft” walls which can be penetrated by radio signals,
of the system, and give excellent estimafé@) for the leading to a high average node degreedf) in the network.
number of carriers at ime Figure 3(a) shows the distribution of link qualitigs;, which

2) The threshold condition derived in Theorem 1 is accuras® Smeared-out over the entire range. The average linkyjual
and sharp; and (considering only the links with non-zero link quality) ieny

IV. EXPERIMENTS

3) The final behavior of the system is insensitive to thigw (0.14). o
starting conditions. e MIT: This is a40-node sensor network at MIT (see [26]

_ . . for an earlier version of the network). Each node is a Crossbo
Next, we describe our datasets and simulation paramet%ﬁCaz Each node was attached to a Crossbow MIB600
and then present the experimental results. interface board that provides both power and an Ethernet
backchannel for programming and data collection. Sensers a

] _ ) placed in a elongated “corridor”. This implies a lower aggra
Four different datasets were used: These include one sypyye degree~¢ 18); however, the link quality distribution is

thetic, one Peer-to-Peer and_ two sensor network deploym@@;y peaked, figure 3(b). This leads to a high value.eg for
datasets. The datasets vary in both size as well as topology,e average link quality (again only considering the noreze

e GRID: This is a large synthetic 2D grid with” = 10,000 qajity links). Note, these conditions are the exact oppasi
nodes andy = 39,600 edges. The link “up” probabilities,() \what we see in théNTEL dataset.

are set td).1 between all neighbors on the grid. )

e GNUTELLA This is a snapshot of the Gnutella peerB. Accuracy of the dynamical system
to-peer file sharing network, collected in Maref01 [41], For each network we set the parameters so that the system
with N= 62,586 nodes anfl = 295,784 edges. The link “up” was below-, above- and at- threshold according to Theorem 1,
probabilitiesd;; are set ta).1 for the existing edges. as shown in Table Il. Given the network and the estimated link

A. Datasets



qualities, we chose parameter values so that they arevediati survivability score ofs = 1. As earlier, the small sizes of
close to the threshold. networksINTEL andMIT have higher variance.
We initialize all nodes in the “Has Info” stat&(t = 0) = We observe the following:
N), since the final state is insensitive to the initial corudis e Below our threshold, the information dies outhe
(see Theorem 3 and the experiments in Section IV-D). We thaomber of carriers is very close to zero for all the datasets.
run the simulation fofl” = 10, 000 steps, according to the state e Above the threshold, the information survivE&sen after
diagram of Figure 2, and we record the number of cari&itg  a “long” time, there is a significant population of nodes ie th
(nodes with information) for each of tHE epochs. Then, we network that are alive and carry the information.
repeated each simulatidif0 times and we record the average e Effect of network sizerTthe larger the network, the
and standard deviation of the number of carriers at eachrepogiore accurately our theorem marks the onset of survivgbilit
Figure 4 shows the number of carriers over time (@09 The results are good foNTEL and MIT (N = 54 and
simulation epochs are shown for visual clarity; the resulty = 40), very good forGRID (N=10,000) and perfect for
are similar overT' = 10,000 timesteps). Simulation resultsGNUTELLA (N=62,000),
are shown in solid lines, along with confidence intervals (+/  In conclusion, our threshold condition is very accurate.
one standard deviation). We also ran our dynamical syst&farying resurrection rate ~: Here we vary the resurrection
(Equations 1-3) with exactly the same parameters and plot Qite », while keeping the the rest fixed%0.1, §=0.01).
estimated number of carries(t) in dotted lines. We observe Figure 6 shows the results in an analogous fashion to Figure
the following: 5. The conclusions are identical as in Figure 5, providing

e The dynamical system is very accuraldie dotted lines additional evidence that our threshold condition is aceura
of our dynamical system are visually indistinguishablenfro

the solid lines of the simulation (relative error is just@nd D. Insensitivity to initial conditions

1%). Thus, Equations 1-3 and their independence assumptioréo far we have considered the case where all nodes are

are highly accurate for a wide variety of real-world seting initially in the ‘Has Info’ state, i.e. all nodes are carser
e The information dies out below our thresholBor all g}

he d h ber of ; infected). Next we show that our results do not change as
the datasets, the number of carriers goes to zero very quici], vary the number of initial carrier§(¢ — 0).

below the threshold. . . Figure 7 shows examples of the network being below-,
e Above our threshold, the number of carriers remaing, - 4 above- the threshold. We run the experiment on

practically constant:For all the datasets, the information, . SNUTELLA network with N = 62.000 nodes and =

survives for a *long” time. 295,000 edges. We vary the number of initially infected rsode

_* Variance decreases with network sidearge networks, ;' the range (1,000, 5,000, 10,000, 20,000, 40,000). Notice
like GRID andGNUTELLA had small variance, which makesthat the behavior is independent of the starting conditions

t_he error bars invisible in Figures 4(a-b). Smaller ngtvsorkln Figure 7(a), below the threshold, the information dies
like the INTEL and MIT datasets show wider conﬁdencgOut exponentially fast. Not surprisingly, with fewer irti

|nt|erv:;Is. IE rftrOS??Ct' this ngakes sense, probably beiag e s+ = 0), the information becomes extinct even faster.
related to the law of large numbers. Figure 7(b) shows the number of carriers over time, when we
C. Accuracy of the threshold condition are at threshold. Now, information is dying out much slower
In this set of experiments, we vary one parameter WhiFgolynomially fast).
: perim ' ary P In Figures 7(c, d), we are above the threshold. Notice that
keeping all the others fixed. The link qualiti¢s; depend . : :
the information now survives. Moreover, all curves coneerg

on the environment, while the death rate is intrinsic to .
. ) .~ to the same expected number of carriérs,.», regardless
the sensor and its battery; thus, we only perform experimen

7 . of the initial conditions. In Figure 7(c), notice that some
that vary the retransmission rate and the resurrection rate .
; . curves move up, while some others move downwards, so that
~. For each dataset, we run simulations for several values

r and~, and recordC«..», the number of carriers left aftertﬁey. aII_ reach. the Sa”.‘e ;tate. The curves in Figure 7(d) are
) a . . X . qualitatively similar, with just a highe€'(t) (thanks to the
a “long” time (1,000 simulation epochs, in our experiments)

Recall that we defined this situation as quasi-steady;siatd higher survivability score).

we definedCuoon as thg number onfesid_ual cgrriers _ V. CONCLUSIONS
Again, for each setting we ruh00 simulations, to obtain ) _ _
confidence intervals. We formulated and studied the problem of the “information

Varying retransmission rate r: Here we fix the death rate Survival threshold”, that is, the condition under which aa

§ and the resurrection rate both t00.01. Figure 5 shows transmitted from node to node will survive, despite node and
the numbeC_- of residual carriers versus the retransmissidiftk failures. Our contributions are the following:

rater, on all four datasets. The results of our dynamical systeme Closed form formula We provide the first and only
(Egs. 1-3) were very close to that of the simulations, and solution to this problem, with a simple formula that works
are omitted for visual clarity. The dashed vertical line ksar for arbitrary network topologies, and arbitrary rates for
the “at-threshold” setting, that is, the value ofthat gives a retransmission, death and resurrection.
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accurate.

« Experiments on real dat@hrough extensive experimentsthat can sustain a ‘datum’®ne could also study mechanisms
we show that our analysis is extremely accurate, withy which nodes in a dynamic high-churn network could

typical relative error about%.

determinghe current threshold, and act accordingly, like, e.g.,

« Several additional observations: (a) the final state dost®p retransmitting to save energy.
not depend on the initial conditions, and (b) our analysis
includes the well known SIS infection model as a special

case.

(1]

From a practical system design point of view, we avoid

(“fast”) extinction if we arrange the network topology art

network parameters (retransmission-, death-, and regiomne
rates) so that we satisfy our condition-€ |)\1 S| >1). And

(2]
(3]

conversely, if we want to guarantee fast extinction (sayafo [4]
computer virus, or an illegal copy of an MP3 song), we should

shoot for the reverse condition.

(5]

Future work could focus on optimization problems, where
our result provides a valuable stepping stone. A typicajdar [6]
guestion would bevhat is the cheapest (least energy) network
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