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Abstract—Consider a network of, say, sensors, or P2P nodes, or
bluetooth-enabled cell-phones, where nodes transmit information
to each other and where links and nodes can go up or down.
Consider also a ‘datum’, that is, a piece of information, like a
report of an emergency condition in a sensor network, a national
traditional song, or a mobile phone virus. How often should nodes
transmit the datum to each other, so that the datum can survive
(or, in the virus case, under what conditions will the virus die
out)? Clearly, the link and node fault probabilities are important
— what else is needed to ascertain the survivability of the datum?

We propose and solve the problem using non-linear dynamical
systems and fixed point stability theorems. We provide a closed-
form formula that, surprisingly, depends on only one additional
parameter, the largest eigenvalue of the connectivity matrix.
We illustrate the accuracy of our analysis on realistic and real
settings, like mote sensor networks from Intel and MIT, as well
as Gnutella and P2P networks.

I. I NTRODUCTION

In this work, we focus on the conditions under which a
self-replicating object can survive in an unreliable network.
We assume a network (e.g. a sensor network) where initially
some nodes have an object (e.g. a query, or some other datum).
Nodes and edges are unreliable: edges may be up or down,
and with some probability, nodes may die (e.g., run out of
batteries); we also assume that they then resurrect with some
resurrection rate (e.g., someone installs fresh batteries). We
assume that a node loses the object in case of death and
subsequent resurrection. (Our upcoming analysis could be
easily modified to handle the converse assumption, but this
is outside the scope of this work). With some transmission
probability, the object may be transmitted from a node that
has it, to its neighbors; if the link and the neighbor are “up”
at the time, the copy is successful.

For example, consider a cellphone network where the com-
munication between nodes is subject to loss (link failures),
and nodes may go down (battery failure, shut down by user
or moved out of range). Consider some static piece of informa-
tion, or “datum”, such as a mobile phone virus. As cellphones
go down, the virus dies; however, when the cellphone is up and
infected, the virus infects other phones. We seek the conditions
under which the virus would die out and not become an
epidemic. Conversely, we could have some information (say,
an emergency alert, or an important “reading”) in a sensor
network, and we want this information to survive. In a high

failure-rate environment (e.g., fire or evacuation system), there
might be very little time between detection of the event and
the destruction of the node. We want to get the data off the
node as quickly as possible and spread it through the network
so that the information will survive.

Thus, informally, the problem can be stated as follows:

Under what conditions can we expect the object or
datum (e.g. the virus, or the piece of information) to
survive or die out in a dynamic network?

We can identify two major cases. In the first, if the transmis-
sion rate is not fast enough, the object will eventually disap-
pear from the network. In the second case, if the transmission
rate is fast enough, then the datum will take over a significant
part of the network1 and it will linger practically for ever.
Interestingly, there is a fascinating, and sharp,phase transition
between the two regimes. The next example illustrates the
above concepts.
Example:Figure 1 shows an example of information survival
on a 2D-grid graph withN = 10, 000 nodes (Section IV has
more details; the qualitative behavior of real graphs is similar).
For each time instantt, we plot the number of “carriers”, that is
the number of ‘up’ nodes carrying the datum. We plot in linear-
linear, log-linear, and log-log scales (plots (a-c), respectively),
to illustrate the qualitative difference in each regime. Using
our upcoming analysis, we chose three sets of parameters
settings, so that we are below-, at-, and above- the threshold.
As we can see, there is a significant, qualitative differencein
behavior under these three settings. Below the threshold, the
information dies outexponentially quickly. This is shown on
figure 1(b), where the exponential function becomes a straight
line when plotted on log-linear scales. Exactly at the threshold
(and by “exactly” we mean several significant digits!), the
number of carriers decayspolynomially, following a power
law ta and becoming a straight line on log-log scales (see
Figure 1(c)). Above the threshold, the expected number of
carriers stabilizes at a non-zero value, and the information
lasts practically for ever, although the number of carriersmay
be less thanN , because of down-nodes, and not-yet-infected

1The datum will not necessarily take over the network completely, since
nodes are continuously dying and waking up, so there are always some nodes
that are alive but without the information.
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Fig. 1. Survival of information on a grid network.Number of carriers, over time, for a 2-D grid network withN=10,000 nodes, and for below, at and above
(our) threshold. Notice very different qualitative behaviors: below threshold, the information dies outexponentiallyquickly (line, in log-lin scales, of Figure
(b)). Exactly at threshold, the information is dying out as apower law (line, in log-log scales, of Figure (c)). Above threshold, the information survives,
practically for ever (all figures).

nodes. We give a precise definition of the term “practically for
ever” in Section III.

Our work provides an analytical model and identifies the
fundamental conditions for which a datum will survive or
become extinct in a dynamic network. Although the problem
definition is deceptively simple, there is no known practical,
exact solution. The obvious one, discussed later in SectionIII,
requires Markov Chains, and is prohibitively expensive: its
computational cost is proportional to3N , where N is the
number of nodes. For reference,3200 is comparable to the
number of electrons in the universe. Note that our model is
very general since it considers: (a) a dynamic network (with
failing links and nodes), (b) arbitrary topology, and (c) does
not make any assumption about the initial conditions.
Our Contributions:They are the following.

1) Closed form formula:Based on our novel dynamical
system model, we derive a survivability condition that
is extremelysimple, general and accurate. In fact, our
formula includes as a special case the SIS model of
viral propagation (described later).

2) Experimental validation of our model:Extensive simu-
lations on several realistic topologies (sensor from Intel,
MIT, and P2P networks like Gnutella) show that our
model is highly accurate in determining the behavior of
the system and identifying the threshold for the phase
transition.

Our work in perspective.In addition to its theoretical
merit, our survivability condition provides a starting point
for: (a) network design, and (b) interpretation of empirical
or simulated results. First, network designers would use our
results to choose the node density, the network size, or the
datum retransmission frequency in order to save or drive to
extinction the datum, when these parameters are known or
under the control of the designer. Second, even when we do
not know or cannot control these properties, our fundamental
relationships will help researchers interpret the observed or
simulated results.

Our work was initially motivated by sensor and P2P network
design, but it is also applicable in several other settings:

• Virus containment and anti-virus protection, where the
“datum” is a virus: Here, wedo want to drive the datum to
extinction, and our approach allows us to decide how often to
quarantineeach node and for how long.
• Social networks: News, rumors, and web-log (“blog”)

dissemination, marketing and fad propagation, and many more
applications that seek to propagate and maintain information
can be handled under this framework.

The remainder of the paper is organized as follows: Sec-
tion II surveys the related work. Section III describes our
non-linear dynamical system approach, and gives the major
theorems and proofs. Section IV gives experimental results.
We conclude in Section V.

II. RELATED WORK

Graphs and sensor networks have attracted a lot of interest
lately, for quick and efficient aggregation of information [20],
[11], for understanding “trust” and “distrust” in online social
networks [21], and in several other areas. With respect to our
problem, the closest related work has been in the areas of
gossip-based protocols, epidemiology, and computer security

a) Gossip-based protocols:Gossip-based protocols have
been studied in both peer-to-peer as well as sensor and other
ad-hoc networks, where nodes may be up or down. The
rate of node turnover in such networks is referred to as
churn [40]; in high-churn settings, gossiping is often useful
as a mechanism for ensuring eventual-consistency of state in
distributed networks despite unpredictable node populations
and connectivity.

Thus, gossip-based protocols have been studied in high-
churn cases, for reliable multicast and broadcast proto-
cols [33], [23], [36], [4], resource location [30], [38], failure
detection [46], [39], [42], [7], [50], database aggregation [28],
database and peer-to-peer replication [12], [10], and ensuring
the stability of dynamic hash table-based peer-to-peer sys-
tems [22], [40]. Information dissemination under memory con-
straints have also been studied [35]. Empirical and theoretical
studies of gossip protocols include [5], [16], [33], [30], [29],
[49].



However, they all assume that the initial infection or re-
broadcast rate is high enough that dying out is not a concern.In
this work we exactly quantify the conditions for survivability.

b) Epidemiology:The epidemiology community has de-
veloped the so-calledSIRandSISmodels [2] of infection. The
SISmodel (Susceptible – Infective – Susceptible) is suitable
for, e.g., the common flu, where nodes may be infected, healed
(and susceptible), and infected again. TheSIRmodel (Suscep-
tible – Infective – Removed) is suitable for, say, mumps, where
a node, after being infected, becomes removed (with life-time
immunity).

The area of “interacting particle systems” is also remotely
related: “particles” propagate over a simple network according
to different processes; the one closest to our work is the
“contact process” [24], [34], [13]. However, most previous
work in this area assumes networks with (a) infinite size, and
(b) regular topologies such as line graphs and grids.

The approach we present here is based on the SIS model –
a node is “susceptible” to a data item when it is online and
functioning normally; as nodes crash, they become “immune”
for the duration of their failure, and later become “susceptible”
again when they are back online. Intuitively, the model we
focus on resembles an SIS model with random “quarantine”.
Our novelty is that we studyarbitrary graph topologies and
we are the first to derive the survivability condition for such
cases.

c) Computer security:There are numerous studies of
worm and virus propagation on the Internet [48], [32], [37],
[43], [45], based on theSIS, SIR and influencemodels of
infection [31], [8], [1], [19]. Others have done detailed forensic
studies of the spread of worms [37], [43], [44] illustrating
the exponential spreading predicted by SIR and SIS models,
with the entire susceptible population quickly become infected
and then slowly being “removed” as patches are applied.
Epidemiological models have again been used in developing
good quarantining strategies for scanning worms [17]. Worm
propagation has been studied under special cases, such as in
email networks [51] and on the IPv6 Internet [3]. Mathematical
modeling of propagation behavior [47], [18] has provided
some answers on “epidemic thresholds”; we show that our
current work includes these results as a special case.

III. PROPOSEDMETHOD

We are given a network ofN nodes (sensors, computers
or people) andE directed links between them. For ease of
exposition, we assume discrete time-steps of size∆t, where
∆t is vanishing (∆t → 0). The continuous-time version
is omitted for space, because it gives identical survivability
results.

Within a ∆t time interval, each nodei has a probability
ri of trying to broadcast its information, and each link
i → j has probabilityβij of being “up”, and thus correctly
propagating the information to nodej. Each nodei also has a
node failure probabilityδi > 0 (e.g., due to battery failure
of the sensor). Every dead nodej has probabilityγj of
resurrecting to the “up” state, but without any information

TABLE I
TABLE OF SYMBOLS

Symbol Description
N Number of nodes in the network
βij Probability that linki → j is up
δi Death rate: Probability that nodei dies
γi Resurrection rate:

Probability that nodei comes back up
ri Retransmission rate:

Probability that nodei broadcasts
pi(t) Probability that nodei is alive at

time t and has info
qi(t) Probability that nodei is alive at

time t but without info
1 − pi(t) − qi(t) Probability that nodei is dead
νi(t) Probability that nodei doesnot receive

info from any of its neighbors at timet
~p(t), ~q(t) Probability column vectors
C̄(t) True number of carriers at timet
Ĉ(t) Estimated number of carriers at timet
C“∞” Number of carriers at quasi-steady-state
S The N × N system matrix
λ

1,S The largest eigenvalue ofS
s = |λ

1,S | “Survivability score”

in its memory (e.g., due to the periodic replacement of dead
batteries). The symbols we use are listed in Table I.

This system can be modeled as a Markov chain, where each
node can be in one of three states: “Has Info”, “No Info” or
“Dead”, with transitions between them as shown in Figure 2.
The full state of the system at any instant consists ofN such
states, one for each node. Thus, there are3N system states.
Transitions out of the current system state dependonly on the
current state and not on any previous states; thus it is a Markov
chain.

There is an extremely subtle point here: observe that there
is an absorbing set of states (where no node is in “Has Info”)
and that this set can be reached from any starting state. Thus,
the information will die out with probability1 as time tends
to infinity (see [6]). However, from a practical point of view,
when the parameter values are within a particular region of
the parameter space, this extinction happens quickly. Defining
this region in the parameter space is exactly the goal of our
work. Outside this region, the time to extinction can be very
long. For example, consider the case of the SIS model, which
is a special case of our problem as we show in Corollary 2
in Section III-D: even for a simple line graph, under the SIS
model and with above-threshold condition, the expected time
to extinctionτ growsexponentiallywith the size of the graph
N . Specifically,τ → c ·eN asN → ∞ [14]. As an arithmetic
example, suppose that we are above threshold, on a network
with N=1000 nodes, and that the time-tick is∆t = 10−9 (the
cycle time of a 1GHz processor). Then the expected time to
extinction isO(e1000 × 10−9) ≈ 10417 years, while the age
of the universe is of the order of billion (109) years. In such
cases, the datum practically survives for “ever”.

The question is: under what conditions does the information
survive for a long time, and when will the information die
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Fig. 2. Transitions for each node:This shows the three states for each node,
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out quickly? LetC̄(t) denote the expected number of carriers
(nodes in “Has Info” state) at timet. In general,C̄(t) decays
exponentially, polynomially or logarithmically (with expected
time to extinction comparable to or larger than the age of the
universe for large graphs), depending whether the system is
below, at or above the threshold [13], [14], [15]. Figures 1(a)-
(c) illustrate these three cases. We focus on the fast extinction
case, since many other works have looked at the rapid spread
case (e.g., [37], [43]).

Definition 1 (Fast Extinction):“Fast extinction” (hence-
forth “extinction”, for brevity) is the setting where the number
of carriers C̄(t) decays exponentially with time (̄C(t) ∝
c−t, c > 1).

We shall use the term “survival” for the converse case,
where the time to extinction is astronomically high. We shall
use the term “at the threshold” for the extremely improbable
case when the number of carriers̄C(t) decreases as a power
law with time. Finally, we shall use the term quasi-steady-state
for the situation when we are above threshold and number
of carriers seems stable, like the ‘above threshold’ case of
Figure 1 for time-tick 200 and above. The number of carriers
C“∞” at the quasi-steady-state will be referred to as “residual
carriers”.

We can now formally state our problem:
Problem 1: Given:the network topology (link “up” proba-

bilities) βij , the retransmission ratesri, the resurrection rates
γi and the death ratesδi (i = 1 . . . N , j = 1 . . .N )

Find: the condition under which a datum will suffer “fast
extinction”.

A. Main Idea

Solving this problem for the full Markov chain requires
3N variables and is thus intractable, even for moderate-sized
networks. Exact values for the “fast extinction” thresholdare
unavailable even for simpler versions of this problem [18].

Our main contribution is an accurate approximation, using
a non-linear dynamical system of onlyN variables. Let
pi(t) andqi(t) be the probabilities of nodei being in the “Has
Info” and “No Info” states at timet, respectively. Thus, the
probability of the node being dead is(1−pi(t)−qi(t)). Then,

we can approximate our setting with the following dynamical
system:

Lemma 1 (Dynamical system):The probabilitiespi(t) and
qi(t) for nodei (i = 1, . . . , N ) to be in state “Has Info” and
“No Info”, respectively, at timet, are approximated by

pi(t) = pi(t − 1) ∗ (1 − δi)

+qi(t − 1) ∗ (1 − νi(t)) ∀i, ∀t (1)

qi(t) = qi(t − 1) ∗ (νi(t) − δi)

+γi (1 − pi(t − 1) − qi(t − 1)) ∀i, ∀t (2)

whereνi(t) is the probability that nodei doesnot receive the
information from any of its neighbors at timet, and it is given
by

νi(t) = ΠN
j=1 (1 − rjβjipj(t − 1)) (3)

Proof: Starting from state “No Info” at timet − 1, node
i can acquire this information (and move to state “Has Info”)
if it receives a communication from some other nodej. Let
νi(t) be the probability that nodei does not receive the
information from any of its neighbors. Then, assuming that
the neighbors’ states areindependent, we use the transition
matrix in Figure 2 and apply it for each nodei, and write
down the probabilities of being in each state at timet, given
the probabilities at timet−1. Recall that we use time-steps of
vanishing size∆t, exactly so that the probability of two events
happening within the same time-tick is vanishingly small, and
thus we can neglect second- and higher-order terms. Eq. 2 is
derived though similar reasoning.

The reader may be skeptical about the impact of the
independence assumption. However, as we show in Section IV,
the assumption (Eqs. 1-3) leads to extremely accurate results
for all the real and synthetic networks we tried. In fact, the
dotted lines in Figure 1(a-c) all correspond to the estimations
with theDynamical Systemand the independence assumption,
while the black circles correspond to averages, after we run
simulations; notice how close the results are.

Next, we discuss the properties of this dynamical system,
and specifically we study the condition for fast extinction on
this system.

B. Main Result

Our goal is to find the conditions under which we have “fast
extinction”. The high-level description of our approach isthe
following: (a) We start from the Dynamical System equations
(Eq (1)-(3)), (b) we show that it has a fixed point (namely,
when the datum/virus is extinct), and (c) we find the conditions
under which this fixed point is “stable”. Under exactly those
conditions, the system will quickly return to the extinct state.

We present the details next. After appropriately manip-
ulating the Dynamical System equations (described in the
extended version [9]), we get the so-calledsystem matrixS,
which is pivotal for the rest of the analysis. This is anN ×N
square matrix, defined as follows:



Definition 2 (System Matrix):

Sij =

{

1 − δi if i = j

rjβji
γi

γi+δi
otherwise (4)

for i = 1, . . .N , andj = 1, . . . N .
Intuitively, the diagonal of the matrix has the terms1− δi,

which give the probability thati-th node will remain alive.
The off-diagonal elementsSij of the matrix contain the
probability that nodei will be infected by nodej: γi

γi+δi
is

the probability nodei is alive and without the information,
rj is the probability thatj transmits information andβji the
probability that the transmission will succeed.

Let |λ
1,S | be the magnitude of the largest eigenvalue (in

magnitude).
Definition 3 (Survivability score):The largest eigenvalue

s = |λ
1,S | of the system matrixS is defined as “survivability

score” for the system.
Let Ĉ(t) to be the expected number of carriers at timet

according to this dynamical system;̂C(t) =
∑N

i=1
pi(t).

Theorem 1 (Condition for fast extinction):If the surviv-
ability scores = |λ

1,S | obeys

s = |λ
1,S | < 1

then we have fast extinction in the dynamical system, that is,
the expected number of carrierŝC(t) decays exponentially
over time.

Proof: The proof follows from Lemma 2 and Theorems 2
and 3. For the full details, see the extended version [9]. At the
high level, the proof examines the stability of the fixed point
of Eqs. 1,2. The fixed point is the case where no node carries
the datum (pi(t) = 0 ∀i). A dynamical system has a stable
fixed point if the first eigenvalue of the Jacobian matrix at
that point is smaller than 1. In our case, the first eigenvalueof
the Jacobian matrix is exactly the same as that of theSystem
Matrix of Eq. 4.

Definition 4 (Threshold):We will use the term “below
threshold” whens < 1, “above threshold” whens > 1, and
“at the threshold” fors = 1.

The results above are very general, and, as we show via
simulations, very accurate as well. Next, we examine one
common special cases, to demonstrate the intuitive behavior
of the system.

Corollary 1 (Homogeneous reliable-link case):If all nodes
exhibit similar behavior,δi = δ, ri = r, γi = γ for all i, and
B = [βij ] is a symmetric binary matrix (links are undirected,
and are always up or always down), then the condition for fast
extinction is:

γr

δ(γ + δ)
λ

1,B < 1 (5)

Proof: The system matrixS can be written asS = (I ∗
(1−δ)+B∗r·γ/(γ+δ)) whereI is theN×N identity matrix.
From the properties of eigenvalues, we have thatλ

1,S = (1−
δ)+ λ

1,B ∗ r · γ/(γ + δ) and, combining with Theorem 1, we
have the proof.

The above result agrees with intuition: The survivability of
the datum increases with the connectivityλ

1,B , the retrans-
mission rater and the resurrection rateγ; and decreases with
the death rateδ.

C. Lemmas and other results

First, we show that the scenario with no information survival
(pi(t) = 0) forms a fixed point of the dynamical system. Then,
we show that below the threshold condition of Theorem 1, this
fixed point isasymptotically stableunder small perturbations
(this is how we derived the condition in Theorem 1). Finally,
we show that our threshold is insensitive to the starting state:
below the threshold,pi(t) → 0 and thusĈ(t) → 0 expo-
nentially quickly. Detailed proofs are provided in extended
version [9].

Before we give the formal version, we present the intuition.
A dynamical system, like, e.g., a ball on a flat surface, has a
fixed point if it is at equilibrium there. The fixed point is said
to be stable (eg., a ball inside a spherical bowl, with non-zero
friction, resting at its bottom), if the system returns to that
point, despite a small perturbation. The ball inside a bowl is
a dynamical system with a few variables (2 polar coordinates
for the ball, and a few more variables for its velocity vector).
In our case, we have 2*N variables, thepi(t) and qi(t) for
each nodei. Our goal is to find the fixed point for our 2*N -
dimensional vector, given the transitions equations (Eq. 1-3)
and study the conditions under which this point will be stable.

Definition 5 (Asymptotic Stability of a Fixed Point):A
fixed point Pf is “asymptotically stable” if, on a slight
perturbation fromPf , the system returns toPf (as opposed
to moving away, or staying in the neighborhood ofPf but
not approaching it) [25].
Mathematically, this means that the Jacobian matrix of the
system, computed at pointPf , has all eigenvalues smaller than
1 in magnitude [25].

Lemma 2 (Fixed Point):The values
(

pi(t) = 0, qi(t) =
γi

γi + δi

)

for all nodesi, are a fixed point of Eqs. 1-3.
Proof: By substitution into Equations 1-3.

Theorem 2 (Stability of the fixed point):The fixed point of
Lemma 2 isasymptotically stableif the system is below the
threshold, that is,s = |λ

1,S | < 1.
Proof: Omitted, for space (see [9]). The sketch of the

proof is as follows: We compute the2N × 2N Jacobian of
our dynamical system, and request that the largest eigenvalue
magnitude< 1. It turns out that this is exactly the eigenvalue
of the N × N system matrixthat we defined earlier.

Theorem 3 (Insensitivity to the starting state):If we are
below threshold (s = |λ

1,S | < 1), then we have fast extinction
regardlessof the starting state.

Proof: See extended version of the paper [9].

D. Corollaries and Special Cases

Here we present some special cases and corollaries, and
show that the results agree with our intuition.



Corollary 2: We include the SIS model of viral infection
as a special case.

Proof: The SIS model has only two states per node: “Has
Infection” and “No Infection.” In our model, if we increase the
resurrection rateγ so that a “dead” node comes back “up”
very quickly, we can give the appearance of onlytwo states:
“Has Info” and “No Info”, and thus mimic the SIS model.
In fact, if the ratio of resurrection-vs-death rate (γ over δi)
increases to infinity, and all death rates are the same, the fast-
extinction condition of Corollary 1 becomesr/δ · λ

1,B < 1
This is exactly the epidemic threshold condition for the SIS
model [47], [18].

Corollary 3 (P2P resilience):Consider astarnetwork (one
hub and many satellite nodes) and aring network (nodes in
a circle) with the same number of nodesN > 5. They have
similar number of edges (N−1 for star, N for ring). However,
thestar network has higher higher survivability score, and the
gap widens with the number of nodesN .

Proof: |λ
1,Bstar

| =
√

N − 1 > 2 = |λ
1,Bring

|. So, the
star network has higher survivability score.

This agrees with intuition: in thestargraph, the central node
will have the datum/virus with very high probability, and itwill
keep transmitting it to the satellite nodes, infecting several
of them, which will in turn infect it back later. In thering
network, every infected node has only two neighbors/chances
to infect - if it fails, the system is one step closer to extinction.
Again, we highlight the fact that thestar network outperforms
the ring on survivability, despite the fact that it is sparser by
one edge.

IV. EXPERIMENTS

To verify our assumptions, we run a set of simulation
experiments on several real and synthetic networks. We show
that

1) Our Equations 1-3 accurately track the true dynamics
of the system, and give excellent estimatesĈ(t) for the
number of carriers at timet;

2) The threshold condition derived in Theorem 1 is accurate
and sharp; and

3) The final behavior of the system is insensitive to the
starting conditions.

Next, we describe our datasets and simulation parameters,
and then present the experimental results.

A. Datasets

Four different datasets were used: These include one syn-
thetic, one Peer-to-Peer and two sensor network deployment
datasets. The datasets vary in both size as well as topology.
• GRID: This is a large synthetic 2D grid withN = 10,000

nodes andE = 39,600 edges. The link “up” probabilities (βij )
are set to0.1 between all neighbors on the grid.
• GNUTELLA: This is a snapshot of the Gnutella peer-

to-peer file sharing network, collected in March2001 [41],
with N= 62,586 nodes andE = 295,784 edges. The link “up”
probabilitiesβij are set to0.1 for the existing edges.

TABLE II
PARAMETER SETTINGS FOR THE DATASETS.

Dataset threshold δ γ r s

below 0.1 0.01 0.1 0.90
GRID at 0.01 0.004 0.1 1.001

above 0.01 0.1 0.1 1.02
below 0.1 0.01 0.1 0.91

GNUTELLA at 0.07 0.004 0.1 1.003
above 0.01 0.01 0.1 1.05
below 0.1 0.01 0.1 0.96

INTEL at 0.02 0.0006 0.1 1.0003
above 0.01 0.01 0.1 1.33
below 0.15 0.01 0.1 0.96

MIT at 0.05 0.0006 0.1 1.01
above 0.01 0.01 0.1 1.88
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Fig. 3. Link quality distributions:Plots (a) and (b) plots the number of links
versus link quality. Pairs of sensors which cannot communicate with each
other have a link quality of0. While the INTEL distribution shows a broad
range of link qualities, theMIT distribution is very highly peaked.

• INTEL: A 54-node sensor network observed over a period
of 33 days [27]. The nodes are Mica2Dot sensors collecting
time-stamped topology information once every 31 seconds.
The data was collected using the TinyDB in-network query
processing system, built on the TinyOS platform. The link-
up probabilitiesβij were estimated from the collected data.
The nodes were deployed in a lab with a rectangular shape
and “soft” walls which can be penetrated by radio signals,
leading to a high average node degree (≈ 46) in the network.
Figure 3(a) shows the distribution of link qualitiesβij , which
are smeared-out over the entire range. The average link quality
(considering only the links with non-zero link quality) is very
low (0.14).
• MIT: This is a40-node sensor network at MIT (see [26]

for an earlier version of the network). Each node is a Crossbow
Mica2. Each node was attached to a Crossbow MIB600
interface board that provides both power and an Ethernet
backchannel for programming and data collection. Sensors are
placed in a elongated “corridor”. This implies a lower average
node degree (≈ 18); however, the link quality distribution is
very peaked, figure 3(b). This leads to a high value of0.92 for
the average link quality (again only considering the non-zero
quality links). Note, these conditions are the exact opposite of
what we see in theINTEL dataset.

B. Accuracy of the dynamical system

For each network we set the parameters so that the system
was below-, above- and at- threshold according to Theorem 1,
as shown in Table II. Given the network and the estimated link



qualities, we chose parameter values so that they are relatively
close to the threshold.

We initialize all nodes in the “Has Info” state (C̄(t = 0) =
N ), since the final state is insensitive to the initial conditions
(see Theorem 3 and the experiments in Section IV-D). We then
run the simulation forT = 10, 000 steps, according to the state
diagram of Figure 2, and we record the number of carriersC(t)
(nodes with information) for each of theT epochs. Then, we
repeated each simulation100 times and we record the average
and standard deviation of the number of carriers at each epoch.

Figure 4 shows the number of carriers over time (only200
simulation epochs are shown for visual clarity; the results
are similar overT = 10, 000 timesteps). Simulation results
are shown in solid lines, along with confidence intervals (+/-
one standard deviation). We also ran our dynamical system
(Equations 1-3) with exactly the same parameters and plot our
estimated number of carrierŝC(t) in dotted lines. We observe
the following:
• The dynamical system is very accurate:The dotted lines

of our dynamical system are visually indistinguishable from
the solid lines of the simulation (relative error is just around
1%). Thus, Equations 1-3 and their independence assumption
are highly accurate for a wide variety of real-world settings.
• The information dies out below our threshold:For all

the datasets, the number of carriers goes to zero very quickly
below the threshold.
• Above our threshold, the number of carriers remains

practically constant:For all the datasets, the information
survives for a “long” time.
• Variance decreases with network size:Large networks,

like GRID andGNUTELLA, had small variance, which makes
the error bars invisible in Figures 4(a-b). Smaller networks,
like the INTEL and MIT datasets show wider confidence
intervals. In retrospect, this makes sense, probably being
related to the law of large numbers.

C. Accuracy of the threshold condition

In this set of experiments, we vary one parameter while
keeping all the others fixed. The link qualitiesβij depend
on the environment, while the death rateδ is intrinsic to
the sensor and its battery; thus, we only perform experiments
that vary the retransmission rater and the resurrection rate
γ. For each dataset, we run simulations for several values of
r and γ, and recordC“∞”, the number of carriers left after
a “long” time (1, 000 simulation epochs, in our experiments).
Recall that we defined this situation as quasi-steady-state, and
we definedC“∞” as the number ofresidual carriers.

Again, for each setting we run100 simulations, to obtain
confidence intervals.
Varying retransmission rate r: Here we fix the death rate
δ and the resurrection rateγ both to 0.01. Figure 5 shows
the numberC“∞” of residual carriers versus the retransmission
rater, on all four datasets. The results of our dynamical system
(Eqs. 1-3) were very close to that of the simulations, and
are omitted for visual clarity. The dashed vertical line marks
the “at-threshold” setting, that is, the value ofr that gives a

survivability score ofs = 1. As earlier, the small sizes of
networksINTEL andMIT have higher variance.

We observe the following:
• Below our threshold, the information dies out:The

number of carriers is very close to zero for all the datasets.
• Above the threshold, the information survives:Even after

a “long” time, there is a significant population of nodes in the
network that are alive and carry the information.
• Effect of network size: rTthe larger the network, the

more accurately our theorem marks the onset of survivability.
The results are good forINTEL and MIT (N = 54 and
N = 40), very good forGRID (N=10,000) and perfect for
GNUTELLA (N=62,000),

In conclusion, our threshold condition is very accurate.
Varying resurrection rate γ: Here we vary the resurrection
rate γ, while keeping the the rest fixed (r=0.1, δ=0.01).
Figure 6 shows the results in an analogous fashion to Figure
5. The conclusions are identical as in Figure 5, providing
additional evidence that our threshold condition is accurate.

D. Insensitivity to initial conditions

So far we have considered the case where all nodes are
initially in the ‘Has Info’ state, i.e. all nodes are carriers
(infected). Next we show that our results do not change as
we vary the number of initial carriers̄C(t = 0).

Figure 7 shows examples of the network being below-,
at- and above- the threshold. We run the experiment on
the GNUTELLA network with N = 62,000 nodes andE =
295,000 edges. We vary the number of initially infected nodes
in the range (1,000, 5,000, 10,000, 20,000, 40,000). Notice
that the behavior is independent of the starting conditions.
In Figure 7(a), below the threshold, the information dies
out exponentially fast. Not surprisingly, with fewer initial
carriersC̄(t = 0), the information becomes extinct even faster.
Figure 7(b) shows the number of carriers over time, when we
are at threshold. Now, information is dying out much slower
(polynomially fast).

In Figures 7(c, d), we are above the threshold. Notice that
the information now survives. Moreover, all curves converge
to the same expected number of carriersC“∞”, regardless
of the initial conditions. In Figure 7(c), notice that some
curves move up, while some others move downwards, so that
they all reach the same state. The curves in Figure 7(d) are
qualitatively similar, with just a higher̄C(t) (thanks to the
higher survivability scores).

V. CONCLUSIONS

We formulated and studied the problem of the “information
survival threshold”, that is, the condition under which a datum
transmitted from node to node will survive, despite node and
link failures. Our contributions are the following:

• Closed form formula: We provide the first and only
solution to this problem, with a simple formula that works
for arbitrary network topologies, and arbitrary rates for
retransmission, death and resurrection.
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Fig. 4. Number of carriers versus time (simulation epochs):Our dynamical system (dotted lines) and simulation (solid lines). Confidence intervals show +/-
one standard deviation. For each dataset we have three cases: below-, at-, and above-threshold, with parameter settings shown in Table II. Notice that (1) The
dynamical system (dotted lines) is very accurate, being close to the simulation (solid lines), and (2) the number of carriers dies out very quickly below the
threshold, while the information “survives” above the threshold.
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Fig. 5. Number of “residual carriers”C“∞”, versus the retransmission probability:The dashed vertical line marks our threshold (s = 1). The information
dies out below our threshold, but survives above it.
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Fig. 6. Number of “residual carriers”C“∞”, versus the resurrection probability:The dashed vertical line marks our threshold. Again, our threshold is very
accurate.

• Experiments on real dataThrough extensive experiments
we show that our analysis is extremely accurate, with
typical relative error about1%.

• Several additional observations: (a) the final state does
not depend on the initial conditions, and (b) our analysis
includes the well known SIS infection model as a special
case.

From a practical system design point of view, we avoid
(“fast”) extinction if we arrange the network topology and the
network parameters (retransmission-, death-, and resurrection-
rates) so that we satisfy our condition (s = |λ

1,S | ≥ 1). And
conversely, if we want to guarantee fast extinction (say, for a
computer virus, or an illegal copy of an MP3 song), we should
shoot for the reverse condition.

Future work could focus on optimization problems, where
our result provides a valuable stepping stone. A typical target
question would bewhat is the cheapest (least energy) network

that can sustain a ‘datum’?One could also study mechanisms
by which nodes in a dynamic high-churn network could
determinethe current threshold, and act accordingly, like, e.g.,
stop retransmitting to save energy.
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