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Abstract
We tackle the problem of inferring node labels
in a partially labeled graph where each node in
the graph has multiple label types and each label
type has a large number of possible labels. Our
primary example, and the focus of this paper, is
the joint inference of label types such as home-
town, current city, and employers, for users con-
nected by a social network. Standard label prop-
agation fails to consider the properties of the la-
bel types and the interactions between them. Our
proposed method, called EDGEEXPLAIN, explic-
itly models these, while still enabling scalable
inference under a distributed message-passing
architecture. On a billion-node subset of the
Facebook social network, EDGEEXPLAIN signif-
icantly outperforms label propagation for several
label types, with lifts of up to 120% for recall@1
and 60% for recall@3.

1. Introduction
Inferring labels of nodes in networks is a common classi-
fication problem across a wide variety of domains ranging
from social networks to bibliographic networks to biolog-
ical networks and more. The typical goal is to predict a
single label of low dimensionality for each node in the net-
work (say, whether a webpage in a .edu domain belongs
to a professor, student, or the department) given a partially
labeled network and possibly attributes of the nodes. In this
paper we instead consider the problem of inferring multiple
fields such as the hometowns, current cities, and employers
of users of a social network, where users often only par-
tially fill in their profile, if at all. Here, we have multiple
types of missing labels, where each label type can be very
high-dimensional and correlated. Joint inference of such
label types is important for many ranking and relevance ap-
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Figure 1. An example graph of u and her friends: The hometown
friends of u coincidentally contain a subset with current city C′.
This swamps the group from u’s actual current city C, causing
label propagation to infer C′ for u. However, our proposed model
(called EDGEEXPLAIN) correctly explains all friendships by set-
ting the hometown to be H and current city to be C.

plications such as friend recommendation, ads and content
targeting, and user-initiated searches for friends, motivat-
ing our focus on this problem.

One standard method of label inference is label prop-
agation (Zhu & Ghahramani, 2002; Zhu et al., 2003),
which tries to set the label probabilities of nodes so that
friends have similar probabilities. While this method suc-
cinctly captures the essence of homophily (the more two
nodes have in common, the more likely they are to con-
nect (McPherson et al., 2001)), it optimizes for only a sin-
gle type of label and assumes only a single category of re-
lationships. It therefore fails to address the potential com-
plexity of edge formation in networks, where nodes have
different reasons to link to each other. As an example, con-
sider the snapshot of a social network in Figure 1, where we
want to predict the hometown and current city of node u,
given what we know about u and u’s neighbors. Here, the
labels of node u are completely unknown, but her friends’
labels are completely known. Label propagation would
treat each label independently and infer the hometown of
u to be the most common hometown among her friends,
the current city to be the most common current city among
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friends, and so on. Hence, if the bulk of friends of u are
from her hometownH , then inferences for current city will
be dominated by the most common current city among her
hometown friends (say, C ′) and not friends from her actual
current city C; indeed, the same will happen for all other
label types as well.

Our proposed method, named EDGEEXPLAIN, approaches
the problem from a different viewpoint, using the following
intuition: Two nodes form an edge for a reason that is likely
to be related to them sharing the value of several label types
(e.g., two users went to the same college). Using this intu-
ition, we can go beyond standard label propagation in the
following way: instead of taking the graph as given, and
modeling labels as items that propagate over this graph, we
consider the labels as factors that can explain the observed
graph structure. For example, the inferences for u made by
label propagation leave u’s edges from C completely un-
explained. Our proposed method rectifies this, by trying to
infer node labels such that for each edge u ∼ v, we can
point to a reason why this is so — u and v are friends from
the same hometown, or college, or the like. While we are
primarily interested in inferring labels, we note that the in-
ferred reason for each edge can be important applications
by itself; e.g., if a new node u joins a network and forms
and edge with v, knowledge of the reason can help with the
well-known link prediction task — should we recommend
v’s college friends, or high-school friends, etc.?

We note that a seemingly simple alternative solution —
cluster the graph and then propagate the most common la-
bels within a cluster — is in fact quite problematic. In ad-
dition to the computation cost, any clustering based solely
on the graph structure ignores labels already available from
user profiles, but any clustering that tries to use these labels
must deal with incomplete and missing labels. The cluster-
ing must also be complex enough to allow many overlap-
ping clusters. Hence, we believe that clustering does not
readily lend itself to a solution for our problem.

Our contributions are:

1. We formulate the label inference problem as one of
explaining the graph structure using the labels. We
explicitly account for the fact that labels belong to a
limited set of label types, whose properties we enu-
merate and incorporate into our model.

2. Our gradient-based iterative method for inferring la-
bels is easily implemented in large-scale message-
passing architectures. We empirically demonstrate its
scalability on a billion-node subset of the Facebook
social network, using publicly available user profiles
and friendships.

3. On this large real-world dataset, EDGEEXPLAIN sig-
nificantly outperforms label propagation for several

label types, with lifts of up to 120% for recall@1
and 60% for recall@3. These improvements in ac-
curacy, combined with the scalability of EDGEEX-
PLAIN, clearly demonstrate its usefulness for label in-
ference on large networks.

The paper is organized as follows. We survey related work
in Section 2. Our proposed model is discussed in Section 3,
followed by the inference method in Section 4, and gener-
alizations of the model in Section 5. Empirical evidence
proving the effectiveness of our method is presented in Sec-
tion 6, followed by conclusions in Section 7.

2. Related Work
We discuss prior work in semi-supervised learning, statis-
tical relational learning, and in latent models for networks.

SEMI-SUPERVISED LEARNING. Many graph-based ap-
proaches can be viewed as estimating a function over the
nodes of the graph, with the function being close to the
observed labels, and smooth (similar) at adjacent nodes.
Label propagation (Zhu et al., 2003; Zhu & Ghahramani,
2002) uses a quadratic function, but other penalties are
also possible (Zhou et al., 2004; Belkin et al., 2004; 2005).
Other approaches modify the random walk interpretation
of label propagation (Baluja et al., 2008; Talukdar & Cram-
mer, 2009). In order to handle a large number of distinct
label values, the label assignments can be summarized us-
ing count-min sketches (Talukdar & Cohen, 2014). None
of the approaches consider interactions between multiple
label types, and hence fail to capture the edge formation
process in graphs considered here.

STATISTICAL RELATIONAL LEARNING. These algorithms
typically predict a label based on (a) a local classifier that
uses a node’s attributes alone, (b) a relational classifier that
uses the labels at adjacent nodes, and (c) a collective in-
ference procedure that propagates the information through
the network (Chakrabarti et al., 1998; Perlich & Provost,
2003; Lu & Getoor, 2003; Macskassy & Provost, 2007).
Macskassy et al. (2007) observe that the best algorithms
(weighted-vote relational neighbor classifier (Macskassy &
Provost, 2007) with relaxation labeling (Rosenfeld & Hum-
mel, 1976; Hummel & Zucker, 1983)) tend to perform as
well as label propagation, which we outperform. While
there has been some work focusing on understanding how
to combine and weigh different edge types for best predic-
tion performance (Macskassy, 2007), the edge types (anal-
ogous to our reason for an edge) were given up front. We
note that these algorithms typically focus on a single la-
bel type, while we explicitly model the interactions among
multiple types.

There is also extensive work on probabilistic relational
models, including Relational Bayesian Networks (Koller
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& Pfeffer, 1998; Friedman et al., 1999), Relational Depen-
dency Networks (Neville & Jensen, 2007), and Relational
Markov Networks (Taskar et al., 2002). These are very gen-
eral formalisms, but it is our explicit modeling assumptions
regarding multiple label types that yields gains in accuracy.

LATENT MODELS. Graph structure has been modeled us-
ing latent variables (Hoff et al., 2002; Miller et al., 2009;
Palla et al., 2012), but with an emphasis on link prediction.
However, our goal is to make predictions about each indi-
vidual user, and such latent features can be arbitrary com-
binations of user attributes, rather than concrete label types
we wish to predict. Other models simultaneously explain
the connections between documents as well as their word
distributions (Nallapati et al., 2008; Chang & Blei, 2010;
Ho et al., 2012). While we do not consider the problem
of modeling text data, our model permits us to incorporate
node attributes, such as group memberships. Finally, the
number of distinct label values in our application is very
large (on the order of millions), and we suspect that the
latent variables would have to have a large dimension to
explain the edges in our graph well.

3. Proposed Model
In this section we first build intuition about our model using
a running example. Suppose we want to infer the labels
(e.g., “Palo Alto High School” and “Stanford University”)
corresponding to several label types (e.g., high school and
college) for a large collection of users. The available data
consist of labels publicly declared by some users, and the
(public) social network among users, as defined by their
friendship network. While the desired set of label types
may depend on the application, here we focus on five label
types: hometown, high school, college, current city, and
employer.

Our solution exploits three properties of these label types:

(P1) They represent the primary situations where two peo-
ple can meet and become friends, for example, be-
cause they went to the same high school or college.

(P2) These situations are (mostly) mutually exclusive.
While there may be occasional friendships sharing,
say, hometown and high-school, we make the simpli-
fying assumption that most edges can be explained by
only one label type.

(P3) Sharing the same label is a necessary but not suffi-
cient condition. For example, “We are friends from
Chicago” typically implies that the indicated individ-
uals were, at some point in time, co-located in a small
area within Chicago (say, lived in the same building,
met in the same cafe), but hardly implies that two ran-
domly chosen individuals from Chicago are likely to
be friends.

(P1) is a direct result of our application; our desired la-
bel types were targeted at friendship formation. Combined
with (P2), our five label types can be considered a set of
mutually exclusive and exhaustive “reasons” for friendship;
while this is not strictly true for high school and hometown,
empirical evidence suggests that it is a good approximation
(shown later in Section 6) and we defer a discussion on
this point to Section 5. However, as (P3) shows, we cannot
simply cast the labels as features whose mere presence or
absence significantly affects the probability of friendship;
instead, a more careful analysis is called for.

Formally, we are given a graph, G = (V,E) and a set of
label types T = {t1, . . . , tk}. For each label type t, let
L(t) denote the (high-dimensional) set of labels for that
label type. Each node in the graph is associated with binary
variables Sut`, where Sut` = 1 if node u ∈ V has label
` for label type t. Let SV and SH represent the sets of
visible and hidden variables, respectively. We want to infer
the correct values of SH , leveraging SV and G.

A popular method for label inference is label propaga-
tion (Zhu & Ghahramani, 2002; Zhu et al., 2003). For a
single label type, this approach represents the labeling by
a set of indicator variables Su`, where Su` = 1 if node u
is labeled as ` and 0 otherwise. Zhu et al. (2003) relax the
labeling to real-valued variables fu` over all nodes u and
labels ` that are clamped to one (or zero) for nodes known
to possess that label (or not). They then define a quadratic
energy function that assigns lower energy states to config-
urations where f at adjacent nodes are similar:

E(f) =
1

2

∑
u∼v

wuv

∑
`

(fu` − fv`)2. (1)

Here, u ∼ v means that u and v are linked by an edge, and
wuv is a non-negative weight on the edge u ∼ v. The mini-
mum of Eq. 1 is found by solving the fixed point equations

fu` =
1

du

∑
u∼v

wuvfv`, (2)

where du =
∑

u∼v wuv . This procedure encourages fu`
of nodes connected to clamped nodes to be close to the
clamped value and propagates the labels outwards to the
rest of the graph. Multiple label types can be handled sim-
ilarly by minimizing Eq. 1 independently for each type.

While this formulation makes full use of (P1) and has the
advantage of simplicity, it completely ignores (P2). Intu-
itively, label propagation assumes that friends tend to be
similar in all respects (i.e., all label types), whereas what
(P2) suggests is that each friendship tends to have a sin-
gle reason: an edge u ∼ v exists because u and v share the
same high school or college or current city, etc. This highly
non-linear function is not easily expressed as a quadratic or
similar variant.
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Instead, we propose a different probabilistic model, which
we call EDGEEXPLAIN. As described above, let SV and
SH represent the sets of visible and hidden variables re-
spectively; the variable Sut` is known (visible) if user u
has publicly declared the label ` for type t, and unknown
(hidden) otherwise. We define EDGEEXPLAIN as follows:

P (SV ,SH) =
1

Z

∏
u∼v

softmax
t∈T

(r(u, v, t)) (3)

r(u, v, t) =
∑

`∈L(t)

Sut`Svt` (4)

softmax
t∈T

(r(u, v, t)) = σ

(
α
∑
t∈T

r(u, v, t) + c

)
, (5)

where Z is a normalization constant. Here, r(u, v, t) indi-
cates whether a shared label type t is the reason underlying
the edge u ∼ v (Eq. 4). The softmax(r1, . . . , r|T |) function
should have three properties: (a) it should be monotonically
non-decreasing in each argument, (b) it should achieve a
value close to its maximum as long as any one of its pa-
rameters is “high”, and also (c) it should be differentiable,
for ease of analysis. In Eq. 5, we use the sigmoid function
to implement this: σ(x) = 1/(1 + e−x). This monoton-
ically increases from 0 to 1, and achieves values greater
than 1− ε once x is greater than an ε-dependent threshold1.
In addition, the sigmoid enables fine control of the degree
of “explanation” required for each edge (discussed below)
and allows for easy extensions to more complex label types
and extra features (Section 5), all of which make it our pre-
ferred choice for the softmax.

In a nutshell, our modeling assumption can be stated as fol-
lows: It is better to explain as many friendships as possible,
rather than to explain a few friendships really well. Eq. 3
is maximized if the softmax function achieves a high value
for each edge u ∼ v, i.e., if each edge is “explained”. This
is achieved if the sum

∑
t∈T r(u, v, t) is more than the re-

quired threshold, which in turn is satisfied if the product
Sut`Svt` is 1 for even one label ` — in other words, when
there exists any label ` that both u and v share. The param-
eter α controls the degree of explanation needed for each
edge; a small α forces the learning algorithm to be very
sure that u and v share one or more label types, while with
a large α, a single matching label type is enough. Empiri-
cal results shown later in Section 6 prove that large α values
perform better (we use α = 10 in our experiments), sug-
gesting that even a single matching label type is enough to
explain the edge. The parameter c in Eq. 5 can be thought
of as the probability of matching on an unknown label type,
distinct from the five we consider. Higher values of c can
be used to model uncertainty that the available label types
form an exhaustive set of reasons for friendships. For our
running example in the social network setting, we set c = 0

1The threshold is introduced solely for explanatory conve-
nience; it is not actually needed by the inference process.

to reflect our belief that the five label types we consider rep-
resent the primary reasons for friendship formation (prop-
erty (P1)).

Further intuition can be gained by considering a node u
whose labels are completely unknown, but whose friends’
labels are completely known (see Figure 1). As we dis-
cussed earlier in Section 1, label propagation would in-
fer the hometown of u to be the most common hometown
among her friends (i.e., H), the current city to be the most
common current city among friends (i.e., C ′), and so on.
However, such an inference leaves u’s friendships from
C completely unexplained. Our proposed method recti-
fies this; Eq. 3 will be maximized by correctly inferring H
and C as u’s hometown and current city respectively, since
H is enough to explain all friendships with the hometown
friends, and the marginal extra benefit obtained from ex-
plaining these same friendships a little better by using C ′

as u’s current city is outweighed by the significant bene-
fits obtained from explaining all the friendships from C by
setting u’s current city to be C.

To summarize, Eq. 4 encapsulates property (P1) by try-
ing to have matching labels between friends; Eq. 5 mod-
els property (P2) by enabling any one label type to explain
each friendship; and the form of the probability distribu-
tion (Eq. 3) uses only existing edges u ∼ v and not all
node pairs, and thus is not affected when, say, two nodes
with Chicago as their current city are not friends, which re-
flects the idea that matching label types are necessary but
not sufficient (P3).

4. Inference
The probabilistic description of EDGEEXPLAIN in Eqs. 3-5
can be restated as an optimization problem in the variables
Sut` ∈ {0, 1}. In the spirit of (Zhu et al., 2003), we pro-
pose a relaxation in terms of a real-valued function f , with
fut` ∈ [0, 1] representing the probability that Sut` = 1, i.e.,
the probability that user u has label ` for label type t. This
yields the following optimization:

Maximize
∑
u∼v

log
(

softmax
t∈T

(r(u, v, t))
)

(6)

where r(u, v, t) =
∑

`∈L(t)

fut`fvt` (7)

∑
`∈L(t)

fut` = 1 ∀t ∈ T (8)

fut` ≥ 0 (9)

where softmax(.) is defined as in Eq. 5, and the equation for
r(.) is analogous to Eq. 4 but measures the total probability
that u and v have the same label for a given label type t.

The problem is not convex in f , but is convex in fu =
{fut`|t ∈ T , ` ∈ L(t)} if the distributions fv are held
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fixed for all nodes v 6= u. Hence, we propose an iterative
algorithm to infer f . Given fv for all v 6= u, finding the
optimal fu corresponds to solving the following problem:

Maximize g(fu) =
∑

v∈Γ(u)

log
(

softmax
t∈T

(r(u, v, t))
)
,

where the summation is only over the set Γ(u) of the
friends of u, and we again restrict fu to be a set of |T |
probability distributions, one for each label type. We note
that g(.) is convex and Lipschitz continuous with constant
L = α · |Γ(u)|, where |Γ(u)| is the number of friends of u.

This is a constrained maximization problem with no closed
form solution for fu. To solve it, we use proximal gradient
ascent, where we iteratively take a step in the direction of
the gradient, and then project it back to the probability sim-
plex ∆ =

{
fut` | fut` ≥ 0,

∑
`∈L(t) fut` = 1∀t ∈ T

}
.

Specifically, let ∇g represent the gradient of g, with com-
ponents given by:

∂g(fu)

∂fut`
=

∑
v∈Γ(u)

αfvt` · σ
(
−α

∑
t∈T

∑
`∈L(t)

fut`fvt` − c
)
.

Let f (k−1)
u =

{
f

(k−1)
ut` |t ∈ T , ` ∈ L(t)

}
be the estimated

probability distributions for each of the T label types at the
end of iteration k − 1, and let q(k)

ut` represent the (possibly
improper) ending point of the k-th gradient step:

q(k)
u = f (k−1)

u + ck∇g,

where ck is a step-size parameter that we could set to a
constant ck = 1/L. The point q(k)

u is now projected to the
closest point in ∆:

f (k)
u = arg min

q′∈∆
‖q(k)

u − q′‖2.

This can be easily achieved in expected linear time over the
size of the label set

∑
t L(t) (Duchi et al., 2008). If only

sparse distributions can be stored for each label type (say,
only the top n labels for each type), the optimal n-sparse
projections can be obtained simply by setting to 0 all but
the top n labels for each label type, and then projecting on
to the simplex (Kyrillidis et al., 2013).

This algorithm converges to a fixed point, and the func-
tion values converge to the optimal at a 1/k rate (Beck &
Teboulle, 2009):

g∗ − g(k) ≤ L‖f (0)
u − f∗u‖2

2k
≤ L|T |

k
,

where f∗u represents the optimal set of probability distribu-
tions, and g∗ is the optimal function value. An important
consequence of the algorithm is that computation of fu

only requires information from fv for the neighbors v of
u. Thus, it is a “local” algorithm that can be easily imple-
mented in distributed message-passing architectures, such
as Giraph (Giraph; Ching, 2013).

5. Generalizations
We now discuss some aspects of EDGEEXPLAIN and some
generalizations that demonstrate its wide applicability.

RELATED LABEL TYPES. Property (P2) assumes that the
reasons for friendship formation are mutually exclusive,
but this need not be strictly true. For example, some high
school friends could be a subset of hometown friends2. Let
us again consider Figure 1, but with current city replaced
by high school. Suppose that the solid-black nodes repre-
sent actual high school friends, and we are trying to infer
u’s high school. If the small cluster on the right did not ex-
ist, then Eq. 3 would be maximized by picking the most
common high school among u’s friends (i.e., the solid-
black nodes), even if they are already explained by a shared
hometown; thus, EDGEEXPLAIN would pick the correct
high school. On the other hand, if some friendships would
remain unexplained without a shared high school (e.g., the
small cluster in Figure 1), then it is not obvious whether
we should prefer a high school that explains these edges or
a high school that represents a large segment of hometown
friends. The parameter α modulates this trade-off, with a
higher value of α emphasizing the explanation of all edges
as against the explanation of several edges a little better.
The choice of α must depend on the characteristics of the
social network; for the Facebook network, the best empir-
ical results are achieved for large α (shown later in Sec-
tion 6), suggesting that many of our label types are indeed
mutually exclusive.

INCORPORATING USER FEATURES. EDGEEXPLAIN eas-
ily generalizes to broader settings with multiple user fea-
tures, such as group memberships, topics of interest, key-
words, or pages liked by the user. As an example, consider
group memberships of users. Intuitively, if most members
of a group come from the same college, then it is likely a
college-friends group, and this can aid inference for group
members whose college is unknown. This can be easily
handled by creating a special node for each group, and cre-
ating “friendship” edges between the group node and its
members. EDGEEXPLAIN will infer labels for the group
node as well, and will explain its “friendships” via the col-
lege label. This, in turn, will influence college inference for
group members with unknown college labels. The impor-
tance of such group membership features can also be tuned,
as described next.

INCORPORATING EDGE FEATURES. There are several sit-
uations where edge-specific features could be useful. First,
we may want to give more importance to certain kinds
of edges, such as the group-membership edges mentioned

2The relationship between high school and hometown is in fact
more complicated. The high school could be within driving dis-
tance of the hometown, but not in it; and sometimes even this does
not hold.



Joint Inference of Multiple Label Types in Large Networks

above. Second, some features could be important for one
label type but not another: e.g., the age difference between
friends could be useful for inferring high school but not
employer. All these situations can be easily handled by
modifying Eq. 4 to include an edge-specific and label type-
specific weight. The corresponding modifications to the
inference method are trivial.

6. Experiments
Previously, we provided intuition and examples suggesting
that EDGEEXPLAIN is better suited to inference of our de-
sired label types than label propagation. Here, we demon-
strate this via empirical evidence on a billion-node graph.

DATA. We ran experiments on a large subgraph of the Face-
book social network, consisting of over 1.1 billion users
and their friendship edges. From the public profile of each
user, we extract the hometown, current city, high school,
college, and employer, whenever these are available. The
dimensionality of our five label types range from almost
900K to over 6.3M . We describe below in IMPLEMENTA-
TION DETAILS our process for generating the edges. This
forms our base dataset.

EXPERIMENTAL METHODOLOGY. The set of users is ran-
domly split into five parts and experimental accuracy is
measured via 5-fold cross-validation, with the known pro-
file information from four folds being used to predict la-
bels for all types for users in the fifth fold. Results over
the various folds are identical to three decimal places. All
differences are therefore significant and we do not show
variances as they are too small to be noticeable.

In each experiment, we run inference on the training set
and compute a ranking of labels for each label type for
each user. This ranking is provided by f computed for
label propagation (Eq. 1) and EDGEEXPLAIN (Eqs. 6-9)
respectively. We then measure recall at the top-1 and top-3
positions, i.e., we measure the fraction of (user, label type)
pairs in the test set where the predicted top-ranked label
(or any of the top-3 labels) match the actual user-provided
label. For reasons of confidentiality, we only present the
lift in recall values of EDGEEXPLAIN as compared to label
propagation. We also note that both EDGEEXPLAIN and
label propagation make predictions on 99% of users in the
test set, so both methods have high coverage.

IMPLEMENTATION DETAILS. We implemented EDGEEX-
PLAIN in Giraph (Giraph; Ching, 2013) which is an it-
erative graph processing system based on the Bulk Syn-
chronous Processing model (Malewicz et al., 2010; Valiant,
1990). The entire set of nodes is split among 200 machines,
and in each iteration, every node u sends the probability
distributions fu to all friends of u. To limit the communi-
cation overhead, we implemented two features: (a) for each

user u and label type t, the multinomial distribution fut.
was clipped to retain only the top 8 entries optimally (Kyril-
lidis et al., 2013), and (b) the friendship graph is sparsified
so as to retain, for each user u, the top K friends whose
ages are closest to that of u. This choice of friends is guided
by the intuition that friends of similar age are most likely
to share certain label types such as high school and col-
lege. We find that clipping the distributions makes little
difference to accuracy while significantly improving run-
ning time. However, the value of K matters significantly,
and we detail these effects next.

RECALL OF EDGEEXPLAIN. Figure 2 shows recall as a
function of varying number of friends K, against a base-
line of EDGEEXPLAIN with K = 20. We observe that
recall increases up to a certain K and then decreases —
K = 100 for recall at 1, and K = 200 for recall at 3.
This demonstrates both the importance and the limits of
scalability: increasing the number of friends enables better
inference but beyond a point, more friends increase noise.
Thus, K = 100 friends appear to be enough for inference
under EDGEEXPLAIN.

Figure 2 also shows an increasing trend from hometown to
employer in the degree of improvement obtained over the
K = 20 baseline. This is because (a) the baseline itself
is best for hometown and worst for employer, but also be-
cause (b) Facebook users appear to have many more friends
from label types other than from their current employer.
The effect of this latter observation is that if we only have
a small K, it is very likely that the few friends from the
same current employer are not included in that limited set
of friends (which we empirically verified). As K increases
and such same-employer edges become available, EDGE-
EXPLAIN can easily learn the reason for these edges (hence
the dramatic increase in recall), but label propagation will
likely be confused by the overall distribution of different
employers among all friends and therefore does not benefit
equally from adding more friends, as we show next.

COMPARISON WITH LABEL PROPAGATION. Figure 3
shows the lift in recall achieved by EDGEEXPLAIN over
label propagation as we increase K for both (the best
K for label propagation is K = 50 for recall at 1 and
K = 100 for recall at 3, similar to EDGEEXPLAIN).
Both methods perform similarly for hometown and cur-
rent city, but EDGEEXPLAIN shows increasing improve-
ments for high school, college, and employer (indeed, for
employer, EDGEEXPLAIN outperforms label propagation
by 120% for recall at 1 and by 60% for recall at 3). This
again points to the first two label types being easier to in-
fer, with the difficulty of inference increase with the latter
types. With fewer employer-based friendships, the proto-
typical example of Figure 1 would also occur frequently,
with label propagation likely picking common employers
of (say) hometown friends instead of the less common
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Figure 2. Recall of EDGEEXPLAIN for graphs built with different number of friends K: The plot shows lift in recall with respect to a
fixed baseline of EDGEEXPLAIN with K = 20. Increasing K increases recall up to a point, but then the extra friends introduce noise
which hurts accuracy.
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Figure 3. Lift of EDGEEXPLAIN over label propagation: Increasing the number of friends K benefits EDGEEXPLAIN much more than
label propagation for high school, college, and especially employer.

Table 1. Lift in recall from using group memberships: Inclusion
of group membership barely improves recall@3, even though it
is an orthogonal feature with wide coverage. Thus, information
about label types is already encoded in the network structure, and
careful modeling via EDGEEXPLAIN is sufficient to extract it.

LABEL TYPE RECALL AT 1 RECALL AT 3

HOMETOWN −0.1% 0.7%
CURRENT CITY 0.4% 1.0%
HIGH SCHOOL 0.1% 0.8%
COLLEGE −0.6% 1.0%
EMPLOYER −2.8% 1.2%

friendships based on the actual employer. By attempting
to explain each friendship, EDGEEXPLAIN is able to infer
the employer even under such difficult circumstances, and
the ability to perform well even for under-represented label
types makes EDGEEXPLAIN particularly attractive.
INCLUSION OF EXTRA FEATURES. In Section 5, we dis-
cussed how extra features could be used within the EDGE-
EXPLAIN framework. In particular, we showed how the
fact that some users are members of groups can be used to
infer (say) their college, if the group turns out to be college-
specific group. Group memberships are extensive and pro-
vide information that is orthogonal to friendships; thus, a

priori, one would expect the addition of group membership
features to have significant impact on label inference.

Table 1 shows the lift in recall for EDGEEXPLAIN when
group memberships are used in addition to K = 100
friends. While the addition of group memberships in-
creases the size of the graph by ≈ 25%, the observed ben-
efits for recall are minor: a maximum lift of only 1.2%
for employer inference, and indeed reduced recall at 1 for
several label types. Note that the lift in recall would have
appeared very significant had we compared it to label prop-
agation with K = 100; however, this gain largely disap-
pears when the friendships are considered in the framework
of EDGEEXPLAIN. Thus, it is not merely the scalability of
EDGEEXPLAIN, but also the careful modeling of properties
(P1)-(P3) that makes group membership redundant.

Given the a priori expectations of the impact of group
memberships, this surprising result suggests that informa-
tion regarding our label types are already encoded in the
structure of the social network and hence the orthogonal
information from the group memberships actually turn out
to be redundant.

THE LIMITS OF RESOLUTION. Our model theoretically
should be able to handle any number of label types, but
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Figure 4. Probability of correctly inferring (in the top-3) the value
of a given label type t for a user, given the fraction of friends with
known label for t who actually share the user’s label for t: All
label types are broadly similar, with a fraction of 0.1 usually being
sufficient for inference. For fraction > 0.2, the plot flattens out.

empirically this may not hold true for our network. How
many friends sharing a certain label type (say, the same
college) does a user need to have in order to correctly infer
the value of that label type? To answer this, we select, for
each user, the set of friends whose label for the given label
type t is known, and we compute the fraction that actually
shared the user’s label for t. Figure 4 shows the probabil-
ity that EDGEEXPLAIN correctly infers the user’s label as
a function of this fraction (i.e., the correct label is among
the top 3 predictions). All label types are similar, though
high school is somewhat easier and employer harder; hav-
ing 10 − 15% of friends sharing a user’s label is sufficient
to infer the label in our graph. Note that certain label types
are more likely to be publicly declared than others, and this
explains differences in recall observed earlier.
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EFFECT OF α. Figure 5 shows that the lift in recall at 1 for
various values of the parameter α, with respect to α = 0.1.
Performance generally improves with increasing α. Re-
sults for recall at 3 are qualitatively similar, though the ef-
fect is more muted. We find that α ∈ [10, 40] offer the best
results, and EDGEEXPLAIN is robust to the specific choice
of α within this range. Recall that with large α, a single

matching label is enough to explain an edge, while with
small α, multiple matching labels may be needed. Thus,
the outperformance of large α provides strong empirical
validation of property (P2) (on our network).
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Figure 6. Running time increases linearly with K.

RUNNING TIME. Figure 6 shows the wall-clock time as a
function of K. The running time should depend linearly
on the graph size, which grows almost linearly with K; as
expected, the plot is linear, with deviations due to garbage
collection stoppages in Java.

7. Conclusions
We proposed the problem of jointly inferring multiple cor-
related label types in a large network and described the
problems with existing single-label models. We noted that
one particular failure mode of existing methods in our prob-
lem setting is that edges are often created for a reason asso-
ciated with a particular label type (e.g., in a social network,
two users may link because they went to the same high
school, but they did not go to the same college). We identi-
fied three network properties that model this phenomenon:
edges are created for a reason (P1), they are generally cre-
ated only for one reason (P2), and sharing the same value
for a label type is necessary but not sufficient for having an
edge between two nodes (P3).

We introduced EDGEEXPLAIN, which carefully models
these properties. It leverages a gradient-based method for
collective inference which allows for fast iterative inference
that is equivalent in running time to basic label propagation.
Our experiments with a billion-node subset of the Facebook
graph amply demonstrate the benefits of EDGEEXPLAIN,
with significant improvements across a set of different label
types. Our further analysis validates many of the properties
and intuitions we had about modeling networks, primarily
that one can achieve significant improvements if one con-
siders and models the reason an edge exists. Whether one
is interested in inferring one or multiple label types, mod-
eling these explanations will have significant impact on the
accuracy of the final predictions.
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