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Abstract

This chapter reviews the main advances, over the last two decades, in the particle
filter (PF) literature for dynamic models. We focus the discussion around the bootstrap
filter (BF) and the auxiliary particle filter (APF), as these are the basis for most of
the contributions in the literature. Both filters are then extended to accommodate
sequential parameter learning, an area that has gained renewed attention over the last
couple of years.

The chapter is mainly intended for those researchers and practitioners with little
or no practical experience with PF and are looking for a hands-on approach to the
subject. With that in mind, we implement and compare the discussed particle filters
in two well known contexts: the AR(1) plus noise model and the stochastic volatility
model with AR(1) dynamics, or simply SV-AR(1) model. The AR(1) plus noise model
is used as a benchmark since all sequential distributions are available in closed-form
when parameters are kept fixed. The SV-AR(1) provides an illustration of the ability
of PF to deal with traditionally challenging non-linear models.

∗Hedibert F. Lopes is Associate Professor of Econometrics and Statistics, Booth School of Business,
University of Chicago, 5807 S. Woodlawn Ave, Chicago, IL 60637, hlopes@chicagobooth.edu. Car-
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1 Introduction

In this chapter, we provide an introductory step-by-step review of Monte Carlo methods for
filtering in general nonlinear and non-Gaussian dynamic models, also known as state-space
models or hidden Markov models (see West and Harrison, 1997, Durbin and Koopman, 2001,
Cappé et al., 2005, and Gamerman and Lopes, 2006). These MC methods are commonly
referred to as sequential Monte Carlo, or simply particle filters. The standard Markovian
dynamic model for observation yt is

yt ∼ f(yt|xt, θ), (1)

xt ∼ g(xt|xt−1, θ), (2)

where, for t = 1, . . . , n, xt is the latent state of the dynamic system and θ is the set of fixed
parameters defining the system. Equation (1) is referred to as the observation equation that
relates the observed series yt to the state vector xt. Equation (2) is the state transition
equation that governs the time evolution of the latent state. For didactical reasons, we
assume throughout this chapter that yt and xt are both scalars. Multidimensional extensions
are, in principle, straightforward and out of our scope.

The central problem in many state-space models, is the sequential derivation of the filtering
distribution. By Bayes’ theorem

p(xt|y1:t, θ) =
f(yt|xt, θ)p(xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
(3)

where y1:t = (y1, . . . , yt) (the same for x1:t). The problem translates, in part, to deriving the
prior distribution of the latent state xt given data up to time t− 1:

p(xt|y1:t−1, θ) =

∫
g(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1. (4)

Even when θ is assumed to be known, sequential inference about xt becomes analytically
intractable, but when dealing with Gaussian dynamic linear models (DLM) (detailed in
Section 2.1).

Most of the early contributions to the literature on the Bayesian estimation of state-space
models boils down to the design of Markov chain Monte Carlo (MCMC) schemes that iter-
atively sample from states and parameters full conditional distributions:

p(x1:n|y1:n, θ) and p(θ|x1:n, y1:n). (5)

The main references include, amongst others, Carlin, Polson and Stoffer (1992), Carter and
Kohn (1994), Frühwirth-Schnatter (1994) and Gamerman (1998). See Migon et al. (2005)
for a thorough review of dynamic models.
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On the one hand, MCMC methods gave the researcher means to free herself from the (usually
unrealistic) assumptions of normality and linearity for both observation equation (1) and
state transition equation (2). On the other hand, however, they took from the researcher
the ability to sequentially learn about states and parameters.

Particle filters are Monte Carlo schemes designed to sequentially approximate the densities in
Equations (3) and (4) over time. The seminal bootstrap filter of Salmond, Gordon and Smith
(1993), for example, uses the sampling importance resampling algorithm to first propagate
particles from time t− 1, i.e. draws from p(xt−1|y1:t−1), via Equation (4), and then resample
the discrete set of propagated particles with weights proportional to the likelihood (Bayes’
theorem from Equation (3)). Sections 3 and 4 provides additional details about the bootstrap
filter as well as many other particles filters for state filtering or state and parameter learning.

The remainder of the chapter is organized as follows. Section 2 introduces the basic notation,
results and references for the general class of Gaussian DLMs, the AR(1) plus noise model
and for the standard stochastic volatility model with AR(1) dynamics. Particle filters for
state learning with fixed parameters (aka pure filtering) and particle filters for state and
parameter learning are discussed in Sections 3 and 4, respectively. Section 5 deals with
general issues, such as MC error, sequential model checking, particle smoothing and the
interaction between particle filters and MCMC schemes.

2 Dynamic models

In what follows we provide basic notation and results, as well as key references, for the
general class of Gaussian DLMs, the AR(1) plus noise model and for the standard stochastic
volatility model with AR(1) dynamics.

2.1 Dynamic linear models

A Gaussian dynamic linear model (DLM) can be written as

yt|xt, θ ∼ N(µ+ F ′txt, σ
2
t ) (6)

xt|xt−1, θ ∼ N(α +Gtxt−1, τ
2
t ), (7)

where intercepts µ and α are added for notational reasons related the stochastic volatility
model of Section 2.3. Conditionally on θ = (F1:n, G1:n, σ

2
1:n, τ

2
1:n, µ, α) and assuming the

initial distribution (x0|y0) ∼ N(m0, C0), it is straightforward to show that

xt|y1:t−1, θ ∼ N(at, Rt), (8)

yt|y1:t−1, θ ∼ N(ft, Qt), (9)

xt|y1:t, θ ∼ N(mt, Ct), (10)
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for t = 1, . . . , n, where N(a, b) denotes the normal distribution with mean a and variance
b. The three densities in Equations (8) to (10) are referred to as the propagation density,
the predictive density and the filtering density, respectively. In fact, the propagation and
filtering densities are the prior density of xt given y1:t−1 and the posterior density of xt given
y1:t. The means and variances of the three densities are provided by the Kalman recursions:

at = α +Gtmt−1 and Rt = GtCt−1G
′
t + τ 2t , (11)

ft = µ+ F ′tat and Qt = F ′tRtFt + σ2
t , (12)

mt = at + Atet and Ct = Rt − AtQtA
′
t, (13)

where et = yt − ft is the prediction error and At = RtFtQ
−1
t is the Kalman gain. Two other

useful densities are the conditional and marginal smoothed densities

xt|xt+1, yt, θ ∼ N(ht, Ht), (14)

xt|y1:n, θ ∼ N(mn
t , C

n
t ), (15)

where

ht = mt +Bt(xt+1 − at+1) and Ht = Ct −BtRt+1B
′
t, (16)

mn
t = mt +Bt(m

n
t+1 − at+1) and Cn

t = Ct +B2
t (C

n
t+1 −Rt+1), (17)

and Bt = CtG
′
t+1R

−1
t+1 (see West and Harrison, 1997, Chapter 4, for additional details).

2.2 AR(1) plus noise model

The AR(1) plus noise model is a Gaussian DLM where the state follows a standard AR(1)
process and yt is observed with measurement error:

yt|xt, θ ∼ N(xt, σ
2) (18)

xt|xt−1, θ ∼ N(α + βxt−1, τ
2). (19)

Conditional on θ = (σ2, α, β, τ 2), the whole state vector x1:n can be marginalized out ana-
lytically (see (9)):

p(y1:n|θ) =
n∏
t=1

pN(yt; ft, Qt), (20)

where pN(x;µ, σ2) is the density of a normal random variable with mean µ and variance σ2

evaluated at x. Notice that here ft and Qt are both nonlinear functions of θ. The density in
Equation (20) is commonly known as prior predictive density or integrated likelihood.
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2.2.1 MC sampling from the posterior.

Posterior draws from p(x1:n, θ|y1:n) can be directly and jointly obtained:

Step (i): Draw {θ(i)}Ni=1 from p(θ|y1:n) ∝ p(θ)p(y1:n|θ). The likelihood p(y1:n|θ) comes from
(20). This can be performed by sampling importance resampling, acceptance-rejection
algorithm or Metropolis-Hastings-type algorithms.

Step (ii): Draw x
(i)
1:n from p(x1:n|θ(i), y1:n), for i = 1, . . . , N , by first computing forward

moments via Equations (11)-(13) and (16), and then sampling backwards xt conditional
on xt+1 and yt via Equations (14). This step is known as the forward filtering, backward
sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994).

Alternatively, θ from step (i) could be sampled, via a Gibbs sampler step, for instance, from
p(θ|y1:n, x1:n). In this case, iterating between steps (i) and (ii) would lead to a MCMC scheme
whose target, stationary distribution is the posterior distribution p(x1:n, θ|y1:n).

2.2.2 Prior specification and sufficient statistics.

Assume that the prior distribution of (α, β, τ 2) is decomposed into τ 2 ∼ IG(ν0/2, ν0τ
2
0 /2) and

(α, β)|τ 2 ∼ N(d0, τ
2D0), for known hyperparameters ν0, τ

2
0 , d0 and D0. It follows immedi-

ately, from basic Bayesian derivations for conditionally conjugate families, that τ 2|y1:t, x1:t ∼
IG(νt/2, νtτ

2
t /2) and (α, β)|τ 2, y1:t, x1:t ∼ N(dt, τ

2Dt), where

D−1t = D−1t−1 + ztz
′
t

D−1t dt = D−1t−1dt−1 + ztxt

νt = νt−1 + 1 (21)

νtτ
2
t = νt−1τ

2
t−1 + (xt − z′tdt)xt + (dt−1 − dt)′D−1t−1dt−1,

and zt = (1, xt)
′. The relevance of these conditional conjugacy results will become apparent

when dealing with some of the particles filter with parameter learning in Section 4. See
Prado and Lopes (2011) for particle methods applied to AR models with structured priors.

2.3 SV-AR(1) model

Univariate stochastic volatility (SV) in asset price dynamics results from the movements
of an equity index St and its stochastic volatility vt via a continuous time diffusion by a
Brownian motion: d logSt = µdt+

√
vtdB

P
t and d log vt = κ(γ− log vt)dt+ τdBV

t , where the
parameters governing the volatility evolution are (µ, κ, γ, τ) and (BP

t , B
V
t ) are (possibly cor-

related) Brownian motions (Rosenberg, 1972, Taylor, 1986, Hull and White, 1987, Ghysels,
Harvey and Renault, 1996, Johannes and Polson, 2010).
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Data arises in discrete time so it is natural to take an Euler discretization of the above
equations. This is then commonly referred to as the stochastic volatility autoregressive,
SV-AR(1), model and is described by the following non-linear dynamic model:

yt|xt, θ ∼ N(0, exp{xt/2}) (22)

xt|xt−1, θ ∼ N(α + βxt−1, τ
2) (23)

where yt are log-returns and xt are log-variances. See Jacquier, Polson and Rossi (1994) and
Kim, Shephard and Chib (1998) for the original Bayesian papers on MCMC estimation of the
above SV-AR(1) model. In addition, Lopes and Polson (2010b) provides an extensive review
of Bayesian inference in the SV-AR(1) model, as well as other univariate and multivariate
SV models.

2.3.1 Sampling parameters.

The SV model is completed with a conjugate prior distribution for θ = (α, β, τ 2), i.e.
p(θ) = p(α, β|τ 2)p(τ 2), where (α, β|τ 2) ∼ N(d0, τ

2D0) and τ 2 ∼ IG(ν0/2, ν0τ
2
0 /2), for known

hyperparameters d0, D0, ν0 and τ 20 . Apart from the nonlinear relationship between yt and xt
in Equation (22), notice the similarity between the above SV-AR(1) model and the AR(1)
plus noise model of Section 2.2. Therefore, sampling (α, β, τ 2) given x1:t can be done via
Equations (21).

2.3.2 Sampling states.

Sampling from x1:t|y1:t, θ jointly is performed by a FFBS scheme introduced by Kim, Shep-
hard and Chib (1998) for the SV-AR(1) model. They approximate the distribution of log y2t
by a carefully tuned mixture of normals with seven components. More precisely, the obser-
vation equation (22) is rewritten by zt = log y2t = xt + εt, where εt = log ε2t follows a logχ2

1

distribution, a parameter-free left skewed distribution with mean −1.27 and variance 4.94.
They argue that ε = logχ2

1 can be well approximated by
∑7

i=1 πipN(εt;µi, v
2
i ), where

π = (0.0073, 0.10556, 0.00002, 0.04395, 0.34001, 0.24566, 0.2575)

µ = (−11.40039,−5.24321,−9.83726, 1.50746,−0.65098, 0.52478,−2.35859)

v2 = (5.79596, 2.61369, 5.17950, 0.16735, 0.64009, 0.34023, 1.26261).

Therefore, a standard data augmentation argument allows the mixture of normals to be
transformed into individual normals, i.e. (εt|kt) ∼ N(µkt , v

2
kt

) and Pr(kt) = qkt . Condition-
ally on k1:t, the SV model can be rewritten as a standard Gaussian DLM:

(zt|xt, kt, θ) ∼ N(µkt + xt, v
2
kt) (24)

(xt|xt−1, θ) ∼ N(β0 + β1xt−1, τ
2). (25)
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The FFBS algorithm is then used to sample from p(x1:n|y1:n, k1:n, θ). Given x1:n, kt is sampled
from {1, . . . , 7} with Pr(κt = i|zt) ∝ πipN(zt;µi + xt, v

2
i ), for i = 1, . . . , 7 and t = 1, . . . , n.

The above two steps, i.e. sampling parameters and sampling states, will be both very useful
in the next two section when deriving particle filters for both state and fixed parameters.

3 Particle filters

Particle filters use Monte Carlo methods, mainly the sampling importance resampling (SIR),
to sequentially reweigh and resample draws form the propagation density. The nonlinear
Kalman filter is summarized by the prior and posterior densities in Equations (4) and (3):

p(xt|y1:t−1) =

∫
g(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(xt|y1:t) ∝ f(yt|xt)p(xt|y1:t−1),

where the vector of fixed parameters θ is assumed to be known and dropped from the notation
and reappearing when necessary. The following joint densities will become useful in Sections
3.1 and 3.2:

p(xt, xt−1|y1:t−1) = g(xt|xt−1)p(xt−1|y1:t−1) (26)

p(xt, xt−1|y1:t) ∝ f(yt|xt)g(xt|xt−1)p(xt−1|y1:t−1). (27)

Particle filters, loosely speaking, combine the sequential estimation nature of Kalman-like
filters with the flexibility for modeling of MCMC samplers, while avoiding some of their
shortcomings. On the one hand, like MCMC samplers and unlike Kalman-like filters, particle
filters are designed to allow for more flexible observational and evolutional dynamics and
distributions. On the other hand, like Kalman-like filters and unlike MCMC samplers,
particle filters provide online filtering and smoothing distributions of states and parameters.
Advanced readers are refereed to, for instance, Cappé, Moulines and Rydén (2005, Chapters
7 to 9) for a more formal, theoretical discussions of sequential Monte Carlo methods.

The goal of most particle filters is to draw a set of i.i.d. particles {x(i)t }Ni=1 that approximates

p(xt|y1:t) by starting with a set of i.i.d. particles {x(i)t−1}Ni=1 that approximates p(xt−1|y1:t−1).
To simplify the notation, from now on we will simply refer to “particles xt−1” when describing

a “set of i.i.d. particles {x(i)t−1}Ni=1”. The most popular filters are the bootstrap filter (BF),
also known as sequential importance sampling with resampling (SISR) filter, proposed by
Gordon, Salmond and Smith (1993), and the auxiliary particle filter (APF), also known as
auxiliary SIR (ASIR) filter, proposed by Pitt and Shephard (1999b). We introduce both of
them in the next Section along with their optimal counterparts.
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3.1 Bootstrap filter

The bootstrap filter (BF) is the seminal and perhaps the most implemented of the particle
filters. It can be basically thought of as the repetition of the sampling importance resampling
(SIR) over time. More precisely, let p(xt−1|y1:t−1) be the posterior density of the latent state
xt−1 at time t− 1. From Equations (4) and (3) and Bayes’ theorem, it is easy to verify that

p(xt, xt−1|y1:t) ∝ f(yt|xt)︸ ︷︷ ︸
2.Resample

g(xt|xt−1)p(xt−1|y1:t−1)︸ ︷︷ ︸
1.P ropagate

. (28)

In words, BF combines old particles xt−1, generated from p(xt−1|y1:t−1), and new par-
ticles xt, generated from g(xt|xt−1), so the combined particles (xt, xt−1) are draws from
p(xt, xt−1|y1:t−1). This step is labeled “1.Propagate” in the above expression. BF then re-
samples the combined particles (xt, xt−1) with SIR weights proportional to the likelihood

ωt ∝
f(yt|xt)g(xt|xt−1)p(xt−1|y1:t−1)

g(xt|xt−1)p(xt−1|y1:t−1)
= f(yt|xt). (29)

This step is labeled “2.Resample” in the above expression. These combined resampled par-
ticles approximate p(xt−1, xt|y1:t) and, in particular, the marginal filtering density p(xt|y1:t).
Figure 1 shows a diagram representation of the BF.

3.1.1 Particle impoverishment.

The overall SIR proposal density (the denominator of (29)) is q(xt, xt−1|y1:t) = p(xt, xt−1|y1:t−1) =
g(xt|xt−1)p(xt−1|y1:t−1). The particles xt from (xt, xt−1) are, in fact, particles from the prior
density p(xt|y1:t−1). It is well known that the SIR algorithm can perform badly when the
prior is used as proposal density. The main reason is that in most cases either the prior
is too flat relative to the likelihood or vice-versa. Small overlap between the prior and the
posterior leads to unbalanced weights, that is a small number of particles will have domi-
nating weights and all other particles will have negligible weights. This decrease in particle
representativeness, or particle degeneracy, is exacerbated when the SIR is carried over time.

Figure 1 about here.

3.1.2 Adapted and fully adapted BF.

Instead of using the evolution density g(xt|xt−1) to propagate xt−1 to xt, one could use an
unblinded proposal, q(xt|xt−1, yt), i.e. a proposal that incorporates the information about
the current observation yt. These filters are commonly called adapted filters. In this case,
q(xt, xt−1|y1:t) = q(xt|xt−1, yt)p(xt−1|y1:t−1) is the SIR proposal density, while the SIR weights
are

ωt ∝
f(yt|xt)g(xt|xt−1)p(xt−1|y1:t−1)

q(xt, xt−1|y1:t)
=
f(yt|xt)g(xt|xt−1)
q(xt|xt−1, yt)

. (30)
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Fully adaptation occurs when one is able to sample from p(xt|xt−1, yt), in which case the SIR
weights are proportional to the predictive density

ωt ∝ p(yt|xt−1). (31)

Even thought fully adaptation is rare, it can be used to guide the researcher in the selection
of proposal densities q(xt|xt−1, yt). The closer q(xt|xt−1, yt) is to p(xt|xt−1, yt) the better.
However, as Pitt and Shephard (1999) say, “even fully adapted particle filters do not produce
iid samples from p(xt|y1:t), due to their approximation of p(xt|y1:t−1) by a finite mixture
distribution.” The AR(1) plus noise model of Section 2.2 and SV-AR(1) model of Section
2.3 can be implemented by fully adapted and adapted versions of the above BF.

3.2 Auxiliary particle filter

Pitt and Shephard (1999) noticed that writing Bayes’ theorem from Equation (28) as

p(xt, xt−1|y1:t) ∝ p(xt|xt−1, y1:t)︸ ︷︷ ︸
2.P ropagate

p(yt|xt−1)p(xt−1|y1:t−1)︸ ︷︷ ︸
1.Resample

, (32)

would lead to alternative ways of designing the SIR proposal density q(xt, xt−1|y1:t). Since
p(yt|xt−1) and p(xt|xt−1, y1:t) are usually, respectively, unavailable for point-wise evaluation
and sampling (see the discussion about fully adapted filters at the end of Section 3.1), they
suggested a generic proposal

q(xt−1, xt|y1:t) = g(xt|xt−1)f(yt|h(xt−1))p(xt−1|y1:t−1), (33)

where h(.) is usually the expected value, median or mode of g(xt|xt−1). The SIR weights
would then be written as

wt ∝
f(yt|xt)g(xt|xt−1)p(xt−1|y1:t−1)

g(xt|xt−1)f(yt|h(xt−1))p(xt−1|y1:t−1)
=

f(yt|xt)
f(yt|h(xt−1))

. (34)

In words, APF would resample old particles xt−1 from p(xt−1|y1:t−1) with weights proportional
to f(yt|h(xt−1)), which take into account the new observation yt. These are usually called the
first-stage weights. This step is labeled “1.Resample” in Equation (32). Then, new particles
xt are sampled from g(xt|xt−1), such that the combined particles (xt−1, xt) are draws from
q(xt−1, xt|y1:t). These combined particles are then resampled with weights given by Equation
(34). These are usually called the second-stage weights. This step is labeled “1.Propagate” in
Equation (32). The final, resampled combined particles approximate p(xt−1, xt|y1:t) and, in
particular, the marginal filtering density p(xt|y1:t). Comparing the above labels and the their
order of operation, we call the APF a resample-sample filter, while the BF is sample-resample
filter. Figure 2 shows a diagram representation of the bootstrap filter.
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3.2.1 Fully adapted APF.

The above generic APF is a partially adapted filter by construction. However, the degree
of adaptation depends on how close the first-stage weights f(yt|h(xt−1)) and the predictive
p(yt|xt−1) are. For general adapted first-stage weights q(xt−1|yt) and adapted resampling
proposal q(xt|xt−1, yt), the SIR weights of Equation (34) become

wt ∝
f(yt|xt)g(xt|xt−1)

q(xt|xt−1, yt)q(xt−1|yt)
. (35)

Similar to the fully adapted BF, the APF is fully adapted when q(xt−1|yt) = p(yt|xt−1) and
q(xt|xt−1, yt) = p(xt|xt−1, yt). In this case, the second-stage weights (Equation (35)) are
proportional to one (no resampling necessary).

3.2.2 Local linearization.

Pitt and Shephard (1999) suggest, for more general settings, proposal density q(xt|xt−1, yt)
that are based on local linearization of the observation equation via an extended Kalman
filter-type approximation in order to better approximate p(xt|xt−1, yt). See Doucet, Godsill
and Andrieu (2000) and Guo, Wang and Chen (2005), amongst others, for additional particle
filters and discussion on proposals based on local linear approximations.

Another class of proposals, usually more efficient when available, is based on the mixture
Kalman filters (MKF) of Chen and Liu (2000). The MKF takes advantage of possible
analytical integration of some components of the state vector by conditioning on some other
components. Such filters are commonly refereed to as Rao-Blackwellized particle filter. This
is also acknowledged in Pitt and Shephard (1999) and many other references. See, for
instance, Douc, Moulines and Olsson (2009) and Doucet and Johansen (2008) and Carvalho
et al. (2010).

Figure 2 about here.

3.3 Marginal likelihood

The above filters can be used to approximate p(y1:t), the marginal likelihood up to time t,
as

p̂(y1:t) =
t∏

j=1

p̂(yj|y1:j−1) =
1

N t

t∏
t=1

N∑
i=1

f(yj|x(i)j ), (36)

where xt are particles from p(xt|y1:t−1). See Chopin (2002) and Del Moral et al. (2006) for
further details and theoretical discussion.
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3.4 Effective sample size

The quality of a particle filter can be measured by its ability to generate a “diverse” par-
ticle set by drawing from proposals q(xt|xt−1, yt) and reweighting with densities q(xt−1|yt).
Kong, Liu and Wong (1994) suggest using the coefficient of variation CVt = (N

∑N
i=1(ω

(i)
t −

1/N)2)1/2, where ω
(i)
t = w

(i)
t /

∑N
j=1w

(j)
t are normalized weights, as a simple criterion to detect

the weight degeneracy phenomenon. CVt varies between 0 (equal weights) and
√
N − 1 (N

copies of a single particle). Liu and Chen (1995) and Liu (1996) propose tracking the effective
sample size Neff = N/(1+CV 2

t ), which varies between 1 (N copies of a single particle) and N

(equal weights). Cappé et al. (2005) tracks the Shannon entropy Ent = −
∑N

i=1 ω
(i)
t log2 ω

(i)
t ,

which varies between 0 (N copies of a single particle) and log2N (equal weights).

3.5 Examples

3.5.1 AR(1) plus noise model.

From Section 2.2 we can easily see that, given θ, the filtering densities p(xt|y1:t) are available
in closed form and no particle filtering is necessary. However, we implement both BF and
APF to this model and use the exact densities to assess their performances. It is easy to
see that p(yt|xt−1) is normal with mean h(xt−1) = α + βxt−1 and variance σ2 + τ 2, while
p(xt|xt−1, yt) is normal with mean Ayt + (1 − A)h(xt−1) and variance (1 − A)τ 2, where
A = τ 2/(τ 2 + σ2). These results are used to implement fully adapted BF and APF, labeled
here by OBF and OAPF (for optimal).

We simulate S = 50 data sets for each value of τ 2 in {0.05, 0.75, 1.0} and all with n = 100
observations; a total of 150 data sets. The other parameters are (α, β, σ2) = (0.05, 0.95, 1.0)
and x0 = 1. The prior for x0 is N(m0, C0) where m0 = 1 and C0 = 10. We run the four
filters R = 50 times, each time based on N = 500 particles. A total of 150×50×4 = 30, 000
combined runs. We then compute the logarithm of the mean square error of filter f and time
t as MSEft =

∑S
s=1

∑R
r (q̂αsftr− qαst)2/RS, where qαst and qαsftr are the true and approximated

αth percentile of p(xt|y1:t), for data set s, time period t, run r, percentile α in {5, 50, 95}
and filter f in {BF,APF,OBF,OAPF}.

Figure 3 summarizes our findings based on log relative MSEs of APF, OBF and OAPF
relative to BF. It suggests that the optimal filters are better then their counterpart non-
optimal filters. In addition, OAPF is uniformly superior to OBF (increasingly in τ 2), so
favoring resampling-sampling filters over sampling-resampling filters. Finally, BF is usually
better than APF for small τ 2/σ2 (small signal-to-noise ratio). Similar results are found when
MSEs are replaced by mean absolute errors (not shown here).

Figure 4 compares the performance of BF and OBF based on the three criteria introduced
in Section 3.4 to monitor particle degeneracy. OBF is increasingly better (more balanced
weights) than BF as τ 2 increases. Recall that BF propagates from N(α + βxt−1, τ

2) and
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OBF propagates from N(Aet + α + βxt−1, (1 − A)τ 2), where et = yt − (α + βxt−1) and
A = τ 2/(τ 2 +σ2). OBF approaches BF when A approaches zero, or when the signal-to-noise
ratio approaches zero. These findings are even more pronounced for larger values of n or τ 2

or both (not known here).

Figures 3 and 4 about here.

3.5.2 SV-AR(1) model.

In this example we illustrate the performance of both bootstrap filter and the auxiliary par-
ticle filter for the SV-AR(1) model of Section 2.3. The parameter vector θ = (α, β, τ 2) is
assumed known (see Section 4.4 for the general case where θ is also learned sequentially).
Let µt = α + βxt−1. On the one hand, the BF propagates new particles xt from N(µt, τ

2),
which are then resampled with weights proportional to pN(yt; 0, ext). On the other hand,
the APF resamples old particles xt−1 with weights proportional to pN(yt; 0, eµt). New par-
ticles xt are then propagated from N(µt, τ

2) and resampled with weights proportional to
pN(yt; 0, ext)/pN(yt; 0, eµt).

Potentially better proposals can be obtained. One could, for instance, use the (rough)
normal approximation N(−1.27, 4.94) to log y2t presented in Section 2.3. This linearization
leads to first-stage weights q(xt−1|yt) = pN(zt;µt, 4.94), where zt = log y2t + 1.27, while
the resampling proposal q(xt|xt−1, yt) is normal with mean v(zt/4.94 + µt/τ

2) and variance
v = 1/(1/4.94 + 1/τ 2). Consequently, it can be shown that the second-stage weights are
proportional to pN(yt; 0, exp{xt})/pN(zt;xt, 4.94). We call this APF filter simply APF1 in
what follows.

A second example is based on Kim, Shephard and Chib (1998). They used, in a MCMC
context, a first order Taylor expansion of e−xt around µt to approximate the likelihood
p(yt|xt) by exp{−0.5xt(1− y2t e−µt)} (up to a proportionality constant). In this setting, the
resampling proposal q(xt|xt−1, yt) is N(µ̃t, τ

2) with µ̃t = µt + 0.5τ 2(y2t e
−µt − 1). First-stage

weights are then q(xt−1|yt) ∝ exp{−0.5τ−2[(1 + µt)τ
2y2t e

−µt + µ2
t − µ̃2

t ]}. We call this APF
filter simply APF2 in what follows.

In a third, more involving example, inspired by Kim, Shephard and Chib (1998), who use a
seven-component mixture of normals to approximate logχ2

1 (see Equations (24) and (25) of
Section 2.3), we obtain a fully adapted APF for the SV-AR(1) model. In this case, the first-
stage weights are proportional to

∑7
i=1 πipN(log y2t ;µi +α+ βmt−1, vi + τ 2 + β2Ct−1), where

mt−1 and Ct−1 are the Kalman moments from Section 2.1. By integrating out both states xt
and xt−1, we expect the above weights to be flatter, more evenly balanced than the respective
ones based on the BF, APF, APF1 and APF2. In addition, instead of sampling xt, we first
sample κt from {1, . . . , 7} with Pr(κt = i) ∝ πiN(log y2t ;µi + α + βmt−1, vi + τ 2 + β2Ct−1),
for i = 1, . . . , 7, and then update mt and Ct via Equations (11) to (13) from Section 2.1. See
the discussion in the last paragraph of Section 3.2. We call this APF filter simply FAAPF
in what follows.
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A total of n = 200 data points were simulated from α = −0.03052473, β = 0.9702, τ 2 =
0.031684 and x0 = −1.024320. This is the specification used in one of simulated exercises
from Pitt and Shephard (1999) and is chosen to mimic the time series behavior of financial
returns. We assume that x0 ∼ N(m0, C0) for m0 = −1.024320 and C0 = 1. We run the
three filters for R = 50 times, each time and each one based on N = 1000 particles. We
then compute their mean absolute error, MAE =

∑n
t=1 |q̂αt,f − qαt |/n, where qαt and qαt,f are

the true and approximated αth percentile of p(xt|y1:t), for α = (5, 50, 95) and f one of the
filters.

Figure 5 summarizes our simulation exercise. The empirical findings suggest that the filters
perform quite similarly, with the FAAPF, followed by the BF, being uniformly better than all
other filters for all percentiles. This is probably partially due to the fact that the variability
of the system equation (τ 2 = 0.02) is much smaller than that of the observation equation.
Recall, from Section 2.3, that the variance of the logχ2

1 is around 4.94. In other words,
pN(yt; 0, exp{α + βxt−1}) does not seem to be a good SIR proposal for p(yt|xt−1). On one
of their simulation exercises, Pitt and Shephard (1999) found similar results. They say that
“the auxiliary particle filter is more efficient than the plain particle filter, but the difference
is small, reflecting the fact that for the SV model, the conditional likelihood is not very
sensitive to the state.”

Figure 5 about here.

4 Parameter learning

The particle filters introduced in Section 3, and illustrated in the examples of Section 3.5,
assumed that θ, the vector of parameters governing the both evolution and observation equa-
tions (see Equations 1 and 2), is known. This was partially for didactical or pedagogical
reasons and partially to emphasize the chronological order of appearance of the filters. Se-
quential estimation of fixed parameters θ is historically and notoriously difficult. Simply
including θ in the particle set is a natural but unsuccessful solution as the absence of a state
evolution implies that we will be left with an ever-decreasing set of atoms in the particle
approximation for p(θ|y1:t).

Important developments in the direction of sequentially updating p(xt, θ|y1:t), instead of
simply p(xt|y1:t, θ), have been made over the last decade and now sequential parameter
learning is an important sub-area of research within the particle filter branch. Liu and West
(2001), Storvik (2002), Fearnhead (2002), Polson, Stroud and Müller (2008) and Carvalho,
Johannes, Lopes and Polson (2010) are a good representation of the rapid developments
in this area. We revisit several of these contributions here along with illustrations of their
implementation in the AR(1) plus noise and SV-AR(1) models.
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4.1 Liu and West’s filter

Liu and West (2001) adapt the generic APF of Section 3.2 to sequentially resample and
propagate particles associated with xt and θ simultaneously. More specifically, Equation
(32) is rewritten as

p(xt, xt−1, θ|y1:t) ∝ p(xt, θ|xt−1, y1:t)︸ ︷︷ ︸
2.P ropagate

p(yt|xt−1, θ)p(xt−1, θ|y1:t−1)︸ ︷︷ ︸
1.Resample

. (37)

Similar to the APF’s generic proposal (Equation 33), Liu and West resample old particles
(xt, θ) with first-stage weights proportional to p(yt|h(xt−1),m(θ)), with h(·) as before and
m(θ) = aθ + (1− a)θ̄. Let θ̃ and x̃t−1 be the resampled particles. New particles θ are then
propagated from the resampled particles via N(m(θ̃), h2V ), where a2 + h2 = 1, and new
particles xt are propagated from g(xt|x̃t−1, θ̃). The second-stage weights are proportional to
p(yt|xt, θ)/p(yt|h(x̃t−1),m(θ̃)). The quantities θ̄ and V are, respectively, the particle approx-
imations to E(θ|y1:t) and V (θ|y1:t).

The key idea here is the choice of the proposal q(xt, θ|xt−1, y1:t) to approximate p(xt, θ|xt−1, y1:t).
The proposal q(xt, θ|xt−1, y1:t) is decomposed into two parts: q(xt|θ, xt−1, y1:t) = g(xt|xt−1, θ)
(blind propagation) and q(θ|xt−1, y1:t), which is locally approximated by N(m(θ), h2V ). This
smooth kernel density approximation (West 1993a,b) literally adds an artificial evolution to
θ, as suggested in Gordon et al. (1993), but it controls the inherently over-dispersion by
locally shrinking the particles θ towards their mean θ̄. Liu and West use standard discount
factor ideas from basic dynamic linear models to select the tuning constant a (or h). The
constants a and h measure, respectively, the extent of the shrinkage and the degree of over
dispersion of the mixture. The rule of thumb is to select a greater than or equal to, say, 0.99.
The idea is to use the mixture approximation to generate fresh samples from the current
posterior in a attempt to avoid particle degeneracy.

The main attraction of Liu and West’s filter is its generality as it can be implemented in any
state-space model. It also takes advantage of APF’s resample-propagate framework and can
be considered a benchmark in the current literature. The steps of the LW algorithm are as
follows:

Step 1 (Resample) (x̃t−1, θ̃) from (xt−1, θ) with weights wt ∝ p(yt|h(xt−1),m(θ));

Step 2 (Propagate)

a) θ̃ to θ̂ via N(m(θ̃), h2V );

b) x̃t−1 to x̂ via g(xt|x̃t−1, θ̂);

Step 3 (Resample) (xt, θ) from (x̂t, θ̂) with weights wt+1 ∝ p(yt|x̂t, θ̂)/p(yt|h(x̃t−1),m(θ̃)).
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4.2 Storvik’s Filter

Storvik (2002) (see also Fearnhead, 2002) proposes a particle filter that sequentially updates
states and parameters by focusing on the particular case where the posterior distribution of θ
given x1:t and y1:t depends on a low-dimensional set of sufficient statistics, i.e. p(θ|y1:t, x1:t) =
p(θ|st), that can be recursively and deterministically updated via st = S(st−1, xt−1, xt, yt)
(such as equation 21).

Both models we are using as illustrations in this chapter, i.e. the AR(1) plus noise and
the SV-AR(1) models, allow sequential parameter learning via updating a set of sufficient
statistics. Other, more general examples are the classe of conditionally Gaussian DLMs and
the class discrete-state dynamic models, such as hidden Markov models (HMM), change-
point models and generalized DLMs. The steps of the Storvik’s algorithm are as follows:

Step 1 (Propagate) xt−1 to x̃t via q(xt|xt−1, θ, yt);

Step 2 (Resample) (xt−1, xt, st−1) from (xt−1, x̃t, st−1) with weights wt ∝ p(yt|x̃t,θ)p(x̃t|xt−1,θ)
q(x̃t|xt−1,θ,yt)

;

Step 3 (Propagate)

a) st = S(st−1, xt−1, xt, yt);

b) θ from p(θ|st).

The resampling proposal density q(xt|xt−1, θ, yt) plays the same role as it did in the BF and
the APF.

4.3 Particle learning

Carvalho et al. (2010) present methods for sequential filtering, particle learning (PL) and
smoothing for a rather general class of state space models. They extend Chen and Liu’s
(2000) mixture Kalman filter (MKF) methods by allowing parameter learning and utilize
a resample-propagate algorithm together with a particle set that includes state sufficient
statistics. They also show via several simulation studies that PL outperforms both the LW
and Storvik filters and is comparable to MCMC samplers, even when full adaptation is
considered. The advantage is even more pronounced for large values of n.

Let sxt denote state sufficient statistics satisfying deterministic updating rule sxt = K(sxt−1, θ, yt),
for K(·) mimicking the Kalman filter recursions of Section 2.1. The steps of a generic PL
algorithm are as follows:

Step 1 (Resample) (θ̃, s̃xt−1, s̃t−1) from (θ, sxt−1, st−1) with weights wt ∝ p(yt|sxt−1, θ);

Step 2 (Propagate)
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a) (xt−1, xt) from p(xt−1, xt|sxt−1, θ, yt)
b) st = S(s̃t−1, xt−1, xt, yt);

c) θ from p(θ|st);
d) sxt = K(s̃xt−1, θ, yt).

The reason for propagating xt−1 in step (2a) above, is that in the great majority of the
dynamic models used in practice, S is a function of xt−1, and possibly several other lags
xt. The AR(1) plus noise model of Section 2.2 and the SV-AR(1) model of Section 2.3 fall
in this category. In addition, it is worth mentioning that (xt−1, xt) is discarded after st is
propagate.

4.4 Examples

We illustrate the various particle filters with parameter learning via the AR(1) plus noise
model and the SV-AR(1) model as before. Then, the SV-AR(1) model is generalized to
accommodate Student’s t errors (Section 4.4.3), leverage effects (Section 4.4.4) and Markov
switching (Section 4.4.5).

4.4.1 AR(1) plus noise model.

We revisit the AR(1) plus noise model Equations (18) and (19) from Section 2.2, but
now assuming that (σ2, τ 2) = (1, 0.05) and that the goal is to sequentially approximate
p(xt, α, β|y1:t). The priors of (α, β) and x0 are, respectively, N(a0, τ

2A0) and N(m0, C0) (see
Section 2.2.2), while parameter sufficient statistics st are defined by the set of Equations
(21). One data set with n = 100 observations is simulated from (α, β, x0) = (0.05, 0.95, 1.0).
The prior hyperparameters are (m0, C0) = (1.0, 10), a0 = (0, 1) and A0 = 2I2.

Figure 6 shows the true contours of p(α, β|y1:n) ∝ p(α, β)p(y1:n|α, β) on a grid for the pair
(α, β) along with approximate contours (N = 1000 particles) based on a OAPF approxima-
tion to p(y1:n|α, β) (Section 3.2 and Equation (20)). In practice, when (α, β) is replaced by
larger parameter vectors, the use of grids could be replaced by a MCMC, SIR or rejection
step. One can argue that approximating p(y1:n|θ) by particle filters should be done with
caution (see Pitt, 2002, and, more recently, Malik and Pitt, 2011, for further discussion).

Figure 7 compares the performance of the LW filter (with a = 0.995) and PL to sequential
(brute force) MCMC. The MCMC for this model is outlined in Section 2.2.1 and is run
for 2000 iterations with the second half used for posterior summaries. The LW filter starts
to show particle degeneracy around the 50th observation and moves away from the true
percentiles. Finally, Figure 8 compares the performance of the LW filter, Storvik’s filter and
PL for one data set. Notice that here LW also takes advantage of fully adaptation, so the
only different between LW and PL is the handling of fixed parameters. Similarly, the main
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difference between Storvik’s filter and PL is that Storvik’s filter propagates first and then
resamples, while PL resamples first and then propagates. As expected, both Storvik’s filter
and PL are significantly better than the “improved” LW filter and PL is slightly better than
Storvik’s, particularly when dealing with the latent state xt and the parameter β and more
so when approximating the tails of the filtering distributions.

Figures 6 to 8 about here.

4.4.2 SV-AR(1) model.

We revisit the SV-AR(1) plus noise model Equations (22) and (23) from Section 2.3, but
now assuming that (α, β|τ 2), τ 2 and x0 are, respectively, N(a0, τ

2A0), IG(ν0/2, ν0τ
2
0 /2) and

N(m0, C0). As in the illustration of Section 3.5.2, a total of n = 200 data points were
simulated from α = −0.03, β = 0.97, τ 2 = 0.03 and x0 = −0.1. We assume, as before, that
(m0, C0) = (−0.1, 1). The other hyperparameters are a0 = (−0.03, 0.97), A0 = 1.6I2 and
(ν0, τ

2
0 ) = (10, 0.04).

The LW filter is based on 500000 particles, while PL is based on 50000. MCMC for the
model (see Sections (2.3.1) and (2.3.2)) is implemented over time for comparison with both
LW filter and PL. MCMC, which starts at the true values, is based on 10000 draws after the
same number of draws is discarded as burn-in. Figures 9 and 10 summarize the results. PL
and MCMC produce fairly similar results, with LW slightly worse. Notice that LW is based
on 10 times more particles than PL. We compared LW, PL and MCMC runs to a fine grid
approximation of p(α, β, τ 2|y1:n), with a 100-point grid for the log-volatilities xt in (−5, 2)
and 50-point grids in the intervals (−0.15, 0.1), (0.85, 1.05) and (0.01, 0.15), for α, β and τ 2,
respectively. In this case, both LW and PL are based on 20000 particles and MCMC is based
on 20000 draws after the same number of draws is discarded as burn-in. Figure 11 shows
that PL and MCMC both approximate the true distributions quite well. LW underestimates
all three parameters.

Figures 9 and 11 about here.

Figure 12 summarizes the R = 10 replications of LW and PL, both based on N = 10000
particles. LW has larger Monte Carlo error when approximation the filtering distributions
for all quantities, with particular emphasis on the volatility of the log-volatility τ 2 and,
consequently, on the latent state xt. Based on this simple exercise and running our code in
R, it takes about 7 and 15 minutes to run the LW filter and PL, respectively. It takes about
8 minutes to run MCMC based on the whole time series of n = 200 observations. It takes
about 13 hours to run MCMC based on y1:t for all t ∈ {1, . . . , 200}, i.e. 50 times slower than
PL and 100 times slower than the LW filter.
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Figure 12 about here.

4.4.3 SV-AR(1) model with t errors.

In order to illustrate particle filters’ ability to approximate the predictive density p(yt|y1:t−1)
via Equation 36 from Section 3.3, we implement PL for the SV-AR(1) model and the SV-
AR(1) model with Student’s t error as in Lopes and Polson (2011). Figure 13 presents data
simulated from the SV-AR(1) model with errors following tν for ν ∈ {1, 2, 4, 30}. Notice that
the number of potential outliers decrease as ν increases with ν = 30 approaching normality.
Figure 14 compares the Bayes factors (in the log scale) of the tν models against normality.
For instance, when the data is t1 or t2, each additional outlier makes Bayes factors support
t models more significantly. For additional discussion on sequential model comparison and
model checking via particle methods see, for instance, Carvalho et al. (2010) and Lopes et
al. (2011).

Figures 13 and 14 about here.

4.4.4 SV-AR(1) model with leverage.

Omori, Chib, Shephard and Nakajima (2009) introduce MCMC for posterior inference in
the SV-AR(1) model with leverage. More precisely, log-volatility dynamics (Equation (23))
is now xt|xt−1, θ ∼ N(α + βxt−1 + τρyt−1 exp{−xt−1/2}, τ 2(1 − ρ2)). Negative ρ captures
the increase in (log-)volatility xt that follows a drop in yt−1. One of their examples, where
(α, β, τ 2, ρ) = (−0.026, 0.97, 0.0225,−0.3), is revisited here based on n = 10000 observations
(they use only n = 1000) in order to illustrate how a simple, generic LW filter performs
relatively well even when the sample size is fairly large. We use their prior specification,
(β + 1)/2 ∼ Beta(20, 1.5), α|β ∼ N(0, (1 − β)2), ρ ∼ U(−1, 1), and τ 2 ∼ IG(5/2, 0.05/2),
and run the LW filter based on N = 500000 particles and tuning parameter a = 0.995.
Figure 15 summarizes the results. This LW filter could be easily extended to fit the other
SV models they considered, such as the SV-t model (see Section 4.4.3) and the superposition
models.

Figure 15 about here.

4.4.5 SV-AR(1) model with regime switching.

Carvalho and Lopes (2007) implements the LW filter for SV-AR(1) models with regime
switching, where Equation (23) becomes xt|xt−1, st, θ ∼ N(α + βxt−1 + γst, τ

2), for γ > 0
and latent regime switching variable st ∈ {0, 1}. We assume, for simplicity, that st obeys a
two-regime homogeneous Markov model with Pr(st = 0|st−1 = 0) = p and Pr(st = 1|st−1 =
1) = q. The vector of fixed parameters is θ = (α, β, τ 2, p, q) and the vector of latent states is
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(xt, st). We revisit their analysis of the IBOVESPA stock index (São Paulo Stock Exchange)
but with a larger data set spanning from 01/02/1997 to 08/08/2011 (n = 3612 observations).
The prior hyperparameters (Section 2.2.2) are d0 = (−0.25, 0.95, 0.05), D0 = 6I3, ν0 = 10
and τ 20 = 0.05, with p ∼ Beta(50, 1), q ∼ Beta(1, 50), x0 ∼ N(0, 1) and s0 ∼ Ber(0.1).
Figures 16 and 17 summarize our findings. The model with regime switching captured the
major 1997-1999 crisis listed in Carvalho and Lopes (2007) as well as the more recent credit
crunch crisis of 2008. It also captured the sharp drop on Monday, August 8th 2011, when
the IBOVESPA (and most financial markets worldwide) suffered a 8% fall following worries
about the weak U.S. economy and the high levels of public debt in Europe. See Lopes and
Polson (2010a) and Rios and Lopes (2011) for further discussion and illustrations of particle
methods in SV-AR(1) models with regime switching.

Figures 16 and 17 about here.

4.4.6 SV-AR(1) model with realized volatility.

In this final illustration, we revisit Takahashi et al. (2009) who estimate SV models using
daily returns and realized volatility simultaneously. Their most general model assumes that
returns y1t ∼ N(0, exp{xt/2}) and that the log-volatility dynamics is xt|xt−1, θ ∼ N(α +
βxt−1 + τρy1,t−1 exp{−xt−1/2}, τ 2(1 − ρ2)) (as in Section 4.4.4). The model is completed
with realized volatility y2t ∼ N(ξ + xt, σ

2), where ξ is the bias-correction term. We use
high frequency data of Tokyo price index (TOPIX) that what was kindly share with us
the authors for this illustration. In what follows y2t is the logarithm of the scaled realized
volatility based on one-minute intraday returns when the market is open during the 10-year
period from April 1st, 1996 to March 31st, 2005 (n = 2216 trading days). Therefore, the
vector of static parameters of the model is θ = (α, β, τ 2, ρ, ξ, σ2). The implementation of the
LW filter is fairly simple and we fit four models to the data: RV model, SV-AR(1) model, SV-
AR(1) model with leverage and the current model. The RV model is basically an AR(1) plus
noise model, in which case ξ = 0 for identification reasons. We label these four models RV,
SV, ASV and ASV-RVC in what follows. The number of particles is N = 100000 and LW’s
tuning parameter is a = 0.995. Figure 18 shows posterior medians for time-varying standard
deviations and their logarithms. The ASV model seems to be less sensitive to extremes
when compared to the SV model. One can argue that the RV model is too adaptive when
compared to the SV model. Similarly, the ASV-RVC is less sensitive to extremes when
compared to the ASV model, while being less adaptive than the RV model. These results
are corroborated by the marginal posterior densities for the models’ parameters in Figures
19 and 20. The persistence parameter β and the leverage parameter ρ are smaller in the
ASV-RVC model. In addition, both parameters ξ and σ2 are away from zero, suggesting
that the biased-corrected realized volatility helps estimating daily log-volatilities xt.

Figures 18 to 20 about here.
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5 Discussion

This chapter reviews many of the important advances in the particle filter literature over
the last two decades. Two relatively simple but fairly general models are used to guide the
review: the AR(1) plus noise model and the SV-AR(1) model. We aim at a broad audience
of researchers and practitioners and illustrate the benefits and the limitations of particle
filters when estimating with dynamic models where sequentially learning of latent states and
fixed parameters is the primary interest.

The applications of Section 4.4 based on the several (important) stochastic volatility models
was intended to illustrate to the reader how relatively complex (despite univariate) models
can be sequentially estimated via particle filters at relatively low computational cost. They
are comparable in performance to the standard MCMC proposed in the references listed
in each one of the examples. It is important to emphasize that this cost increases with the
dimension of both latent state and static parameter vectors and that this is one of the leading
sub areas of current theoretical and empirical research.

There are currently several review papers, chapter and books the reader should read after
becoming fluent with the tools we introduce here. Amongst those are the earlier papers by
Doucet, Godsill and Andrieu (2000), Arulampalam, Maskell, Gordon and Clapp (2002) and
Crisan and Doucet (2002), books by Liu (2001), Doucet, De Freitas and Gordon (2001) and
Ristic, Arulampalam and Gordon (2004) and the 2002 special issue of IEEE Transactions on
Signal Processing on sequential Monte Carlo methods. See also the review by Chen (2003).

More recent reviews are Cappé, Godsill and Moulines (2007), Doucet and Johansen (2009),
Prado and West (2010, chapter 6) and Lopes and Tsay (2011). They carefully organize and
highlight the fast development of the field over the last decade, such as parameter learning,
more efficient particle smoothers, particle filters for highly dimensional dynamic systems
and, perhaps the most recent one, the interconnections between MCMC and SMC methods.

Many important topics and issues were left out. Particle smoothers, for instance, are becom-
ing a realistic alternative to MCMC in dynamic systems when the smoothed p(x1:t|y1:t), or
simply p(xt|y1:t), is the distribution of interest. See Godsill, Doucet and West (2004), Fearn-
head, Wyncoll and Tawn (2010), Douc, Garivier, Moulines and Olsson (2009) and Briers,
Doucet and Maskell (2010), amongst others.

The interface between PF and MCMC methods is illustrated in our examples (see, for exam-
ple, Section 3.3 and Figure 20). Hybrid schemes that combine particle methods and MCMC
methods are abundant. Gilks and Berzuini (2001) and Polson, Stroud and Müller (2008), for
instance, use MCMC steps to sample and replenish static parameters in dynamic systems.
Andrieu, Doucet and Holenstein (2010) introduce particle MCMC methods to efficiently
construct proposal distributions in high dimension via SMC methods. See also Pitt et al.
(2011).

Finally, particle filters have recently received a lot of attention in estimating non-dynamic
models such as mixtures, gaussian processes, tree models, etc. Important references are
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Lopes et al. (2011) and Carvalho, Lopes, Polson and Taddy (2010).
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Figure 1: Schematization of the bootstrap filter. Based on y1 = 8.4 and y2 = 5.3 and the fol-
lowing model: Initial distribution: x0 ∼ N(0, 2), evolution equation: xt|xt−1 ∼ N(0.5xt−1 +
25xt−1/(1 + x2t−1) + 8cos(1.2(t− 1)), 10), and observation equation: yt|xt ∼ N(0.05x2t , 1).
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Figure 2: Schematization of the auxiliary particle filter. See description in Figure 1.
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Figure 3: AR(1) plus noise model (pure filter). Relative mean square error performance (on
the log-scale) of the four filters across S = 50 data sets of size n = 100 and R = 50 runs of
each filter. Particle size for all filters is N = 500. Numbers below zero indicate a superior
performance of the filter relative to the bootstrap filter (BF).
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Figure 4: AR(1) plus noise model (pure filter). Detecting weight degeneracy via coefficient
of covariation (CV ), effective sample size (Neff) and entropy (ENT ) from Section 3.4. The
measures are of the bootstrap filter (BF) relative to its optimal version (OBF) and based on
S = 50 data sets of size n = 100 and R = 50 runs of each filter. Particle size for all filters
and simulations is N = 500. Small CV , large Neff and large ENT implies more balanced
weights.
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Figure 5: SV-AR(1) model (pure filter). Relative mean absolute error performances. The top
panels show the trajectories of true (dark lines) and BF-based approximations (grey lines) for
the αth percentiles p(xt|yt), with α in {5, 50, 95} and particle sizes N in {100, 1000, 10000}.
True trajectories are basically BF with N = 1000000 (using APF or APF1 produced the
same results). The middle panels show MAE based on R = 100 runs of each filter based on
N = 1000 particles. APF1, APF2 and FAAPF are APF with first-stage weights q(xt−1|yt)
and resampling proposal q(xt|xt−1, yt) described in Section 3.5. Bottom panels are relative
MAE of APF, APF1, APF2 and FAAPF relative to BF.
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Figure 6: AR(1) plus noise model (parameter learning). Left panel: Contours of the prior
distribution p(α, β) (dashed lines) and exact contours of the posterior distribution p(α, β|y1:n)
(solid lines). Right panel: Contours of p̂(α, β|y1:n) ∝ p(α, β)p̂(y1:n|α, β), where approximated
integrated likelihood p̂(y1:n|α, β) is based on the OAPF of Section 3.2 and Equation (20).
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Figure 7: AR(1) plus noise model (parameter learning). 5th, 50th and 95th percentiles of
p(α|y1:t) (top) and p(β|y1:t) (middle) and p(xt|y1:t) (bottom) based on MCMC, LW filter and
PL. MCMC is based on 1000 draws (after discarding the first 1000 draws). LW and PL are
based on 1000 particles.
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Figure 8: AR(1) plus noise model (parameter learning). Relative mean square error perfor-
mance (on the log-scale) of LW filter, Storvik’s filter and PL for one data set of size n = 100
and R = 50 runs of each filter. The number of particles is N = 1000. MSEs are based on
comparisons to one PL run with 100000 particles.
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Figure 9: SV-AR(1) model (parameter learning). Top: simulated time series. Bottom:
Approximate 5th, 50th and 95th percentiles of p(xt|y1:t) based on LW filter (solid lines), PL
(dashed lines) and MCMC (dots).
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Figure 10: SV-AR(1) model (parameter learning). Approximate 5th, 50th and 95th per-
centiles of p(α|y1:t) (top), p(β|y1:t) (middle) and p(τ 2|y1:t) (bottom) based on LW filter (solid
lines), PL (dashed lines) and MCMC (dots).
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Figure 11: SV-AR(1) model (parameter learning). First three rows: True (contours) and
approximated (dots) joint posterior distributions: p(α, β|y1:n) (1st row), p(α, τ 2|y1:n) (2nd
row) and p(β, τ 2|y1:n) (3rd row). Columns are based on LW filter, PL and MCMC. Forth row:
True and approximated marginal posterior distributions p(α|y1:n), p(β|y1:n) and p(τ 2|y1:n).
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Figure 12: SV-AR(1) model (parameter learning). Approximate 5th, 50th and 95th per-
centiles of p(α|y1:t) (1st row), p(β|y1:t) (2nd row), p(τ 2|y1:t) (3rd row) and p(xt|y1:t) (4th
row) based on LW filter (left column) and PL (right column) for R = 10 replications of both
filters and 10000 particles.
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Figure 13: SV-AR(1) model with tν error. Time series of n = 200 data points simulated
from the SV-AR(1) model with tν errors, α = −0.03, β = 0.97, τ 2 = 0.03, x0 = −0.1 and
ν ∈ {1, 2, 4, 30}.
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Figure 14: SV-AR(1) model with tν error. Bayes factors (in the log scale) of fitting tν models
against normal models. Corresponding simulated data are in Figure 13. The lines are t1
(solid dark line), t2 (solid grey line), t4 (dashed dark line) and t30 (dashed grey line). Thicker
solid lines correspond to the true data generating models.
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Figure 15: SV-AR(1) model with leverage. Sequential parameter learning based on LW filter
and N = 500000 particles.
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Figure 16: SV-AR(1) model with regime switching. IBOVESPA returns (top frame) from
01/02/1997 to 08/08/2011 (n = 3612 observations), Log Bayes factor (middle frame) and
Pr(st = 1|y1:t) (bottom frame). The LW filter is based on N = 200000 particles.

43



−
4

−
3

−
2

−
1

0
1

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

α

SV
MSSV

−
4

−
3

−
2

−
1

0
1

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

α + γ

0.
6

0.
7

0.
8

0.
9

1.
0

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

β

SV
MSSV

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

τ2

SV
MSSV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

p

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1/2/97 1/2/98 1/4/99 1/3/00 1/2/01 1/2/02 1/2/03 1/2/04 1/3/05 1/2/06 1/2/07 1/2/08 1/2/09 1/4/10 1/3/11

q

Figure 17: SV-AR(1) model with regime switching. Sequential posterior quantiles of α and
α + γ (top row), β and τ 2 (middle row) and p and q (bottom row).

44



D
ai

ly
 r

et
ur

n

−
6

−
4

−
2

0
2

4
6

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

Lo
g 

re
al

iz
ed

 v
ol

at
ili

ty

−
1

0
1

2
3

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

S
ta

nd
ar

d 
de

vi
at

io
n

0.
5

1.
0

1.
5

2.
0

2.
5

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

SV
ASV

Lo
g 

st
an

da
rd

 d
ev

ia
tio

n

−
1

0
1

2
3

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

SV
RV

S
ta

nd
ar

d 
de

vi
at

io
n

0.
5

1.
0

1.
5

2.
0

2.
5

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

ASV
ASVRVC

Lo
g 

st
an

da
rd

 d
ev

ia
tio

n

−
1

0
1

2
3

Apr0196 Jan2098 Nov0499 Aug2101 June1103 Mar3105

RV
ASVRVC

Figure 18: SV-AR(1) plus realized volatility model. Top row: Daily returns and logarithm of
daily realized volatilities. Middle and bottom rows: Posterior medians of standard deviations
and their logarithms based on four models: SV-AR(1) model (SV), SV with leverage (ASV),
realized volatility (RV) and ASV-RV combined (ASV-SRVC).
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Figure 19: SV-AR(1) plus realized volatility model. Percentiles of the sequential posterior
distributions of the static parameters. Top row: (α, β, τ 2). Bottom row: (ρ, ξ, σ2).

46



−0.01 0.00 0.01 0.02 0.03

0
50

10
0

15
0

D
en

si
ty

α

RV
SV
ASV
ASV−SRVC

0.90 0.92 0.94 0.96 0.98 1.00

0
20

40
60

80

D
en

si
ty

β

RV
SV
ASV
ASV−SRVC

0.01 0.02 0.03 0.04 0.05 0.06

0
50

10
0

15
0

20
0

25
0

D
en

si
ty

τ2

RV
SV
ASV
ASV−SRVC

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

0
5

10
15

D
en

si
ty

ρ

ASV
ASV−SRVC

0.00 0.05 0.10 0.15

0
5

10
15

D
en

si
ty

ξ

0.090 0.095 0.100 0.105 0.110 0.115

0
20

40
60

80
10

0
12

0

D
en

si
ty

σ2

Figure 20: SV-AR(1) plus realized volatility model. Posterior distributions for the static
parameters of the four competing volatility models (see Figure 18). SV and RV: (α, β, τ 2),
ASV: (α, β, τ 2, ρ), ASV-SRVC: (α, β, τ 2, ρ, ξ, σ2).
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