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Section 4
The AR(1) + noise model

Our first DLM...
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AR(1) Process Observed with Noise

In general:
Dynamic models (DMs)
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AR(1) Process Observed with Noise

The Model:

yt = θt + νt

θt = α + βθt−1 + εt

I νt ∼ N(0, τ2) and εt ∼ N(0, ω2)... independent.

I p(θ0|D0) = N(m0,C0) – This is the posterior for θ0 at time 0

I Dt = {Dt−1, yt} is the information set up to t.

I Assume, for now, knowledge of α, β, ω2 and τ2

I Is this model weakly stationary?
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AR(1) Process Observed with Noise

1. Prior for θ1:

p(θ1|D0) =

∫
p(θ1|θ0,D0)p(θ0|D0)dθ0

= N(a1,R1)

where
a1 = α + βm0 and R1 = β2C0 + ω2

2. Predictive for y1:

p(y1|D0) =

∫
p(y1|θ1,D0)p(θ1|D0)dθ1

= N(f1,Q1)

where
f1 = a1 and Q1 = R1 + τ2
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AR(1) Process Observed with Noise

3. Posterior for θ1:

p(θ1|D1) ∝ p(y1|θ1,D0)p(θ1|D0)

[
θ1
y1
|D0

]
∼ N

([
a1

f1

]
,

(
R1 R1

R1 Q1

))
(Why?) Therefore,

[θ1|D1] ∼ N(m1,C1)

where

m1 = a1 + A1e1

C1 = R1 − R1A1

with
A1 = R1/Q1 and e1 = (y1 − f1)
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AR(1) Process Observed with Noise

I What about (θ0|D1)? (what does that mean)?

p(θ0|D1) =

∫
p(θ0|θ1,D1)p(θ1|D1)dθ1

=

∫
p(θ0|θ1,D0)p(θ1|D1)dθ1

where
p(θ0|θ1,D0) ∝ p(θ1|θ0,D0)p(θ0|D0)

...okay, in this model we should be able to solve the above
integral... an easier way is to work with the multivariate
normal representation:[

θ0
y1
|D0

]
∼ N

([
m0

f1

]
,

(
C0 βC0

βC0 Q1

))
(Why?)
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AR(1) Process Observed with Noise

Therefore,
[θ0|D1] ∼ N(h0,H0)

where

h0 = m0 + βC0Q
−1
1 e1

H0 = C0 − β2C 2
0 Q−1

1
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Filter-Forward Recursions

We can generalize the above discussion by the following:

I Posterior at t − 1: [θt−1|Dt−1] ∼ N(mt−1,Ct−1)

I Prior at t − 1: [θt |Dt−1] ∼ N(at ,Rt)
with

at = α + βmt−1 and Rt = β2Ct + ω2

I Predictive at t − 1: [yt |Dt−1] ∼ N(ft ,Qt)
with

ft = at and Qt = Rt + τ2

I Posterior at t: [θt |Dt ] ∼ N(mt ,Ct)

mt = at + Atet and Ct = Rt − RtAt

with
At = Rt/Qt and et = yt − ft
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But...

I What about α, β, ω2 and τ2?

I Could we handle

[α, β, ω2, τ2|θ1:T ,DT ]

I If so, a Gibbs sampler iterates through (drawing)

1. [α, β, ω2, τ 2|θ1:T ,DT ]
2. [θ1:T |α, β, ω2, τ 2,DT ]
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Our First FFBS

FFBS stands for Filter Forward Backward Sampling
This is what the Gibbs Sample for models like the AR(1) plus noise
is called due to its form... we’ll see below.

Our Goal: Obtain samples from the joint posterior of
(α, β, τ2, ω2, θ1:T )

How: Build a Gibbs sampler that iterates through (drawing)

1. p(α, β, ω2, τ2|θ1:T ,DT )

2. p(θ1:T |α, β, ω2, τ2,DT )

I Step 1 should be easy, right?

I Step 2 requires some work...
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p(θ1:T |α, β, ω2, τ 2,DT )

For notation simplicity, let us drop the fixed parameters from the
conditioning set, i.e, p(θ1:T |α, β, ω2, τ2,DT ) = p(θ1:T |DT )

p(θ1:T |DT ) = p(θ1, θ2, . . . , θT |α, β, ω2, τ2,DT )

= p(θ1|θ2, . . . , θT ,DT )p(θ2|θ3, . . . , θT ,DT ) . . . p(θT |DT )

=
T−1∏
t=1

p(θt |θt+1:T ,DT )p(θT |DT )

I So, we know p(θT |DT ), right? p(θT |DT ) = N(mT ,CT )

I How about p(θt |θt+1:T ,DT )?
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p(θ1:T |α, β, ω2, τ 2,DT )

Given the conditional independence structure of the model we can
write

p(θt |θt+1:T ,DT ) = p(θt |θt+1,Dt)

(Why?)

Okay, now this should be straightforward as

p(θt |θt+1,Dt) ∝ p(θt+1|θt ,Dt)p(θt |Dt)

[
θt
θt+1

|Dt

]
∼ N

([
mt

at+1

]
,

(
Ct βCt

βCt Rt+1

))
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p(θ1:T |α, β, ω2, τ 2,DT )

Hence,

p(θt |θt+1,Dt) = N(ht ,Bt)

where

ht = mt + βCt/Rt+1(θt+1 − at+1)

Bt = Ct − β2C 2
t /Rt+1
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Now what?

I Okay, now what??

I It looks like we can, conditional on the fixed parameters
defining the system, filter forward and get to p(θT |DT )

I We then draw θ
(1)
T from p(θT |DT )...

I Now, we should be able to sample θ
(1)
T−1 from

p(θT−1|θ
(1)
T DT−1)... keep going until we get to...

I {θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
T−1, θ

(1)
T } a draw from the joint distribution

p(θ1:T |α, β, ω2, τ2,DT )
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Homework

I Estimate an AR(1) plus noise model to the“daily temperature
in Austin data” available in the class website. Only use the
last 1,000 observations.

I Report histograms of your posterior distribution for the fixed
parameters

I Plot the time series of the observed temperature along with
the posterior mean and posterior 95% range for each latent
state.

I Predict the temperature for the next 20 days... plot the
predictions and prediction intervals.
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