
Advanced Regression
Summer Statistics Institute

Day 4: Time Series, Logistic Regression and More...
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Time Series Data and Dependence

Time-series data are simply a collection of observations gathered

over time. For example, suppose y1 . . . yT are

I Annual GDP.

I Quarterly production levels

I Weekly sales.

I Daily temperature.

I 5 minute Stock returns.

In each case, we might expect what happens at time t to be

correlated with what happens at time t − 1.
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Time Series Data and Dependence

Suppose we measure temperatures daily for several years.

Which would work better as an estimate for today’s temp:

I The average of the temperatures from the previous year?

I The temperature on the previous day?
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Example: Length of a bolt...

Suppose you have to check the performance of a machine making

bolts... in order to do so you want to predict the length of the next

bolt produced...

Bolt index (in time)
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What is your best guess for the next part?
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Example: Beer Production
Now, say you want to predict the monthly U.S. beer production (in

millions of barrels).

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
70

month

be
er

What about now, what is your best guess for the production in the next

month? 5



Examples: Temperatures
Now you need to predict tomorrow’s temperature at O’Hare from

(Jan-Feb).
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Is this one harder? Our goal in this section is to use regression models to

help answer these questions... 6



Fitting a Trend

Here’s a time series plot of monthly sales of a company...
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What would be a reasonable prediction for Sales 5 months from

now?
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Fitting a Trend

The sales numbers are “trending” upwards... What model could

capture this trend?

St = β0 + β1t + εt εt ∼ N(0, σ2)

This is a regression of Sales (y variable) on “time” (x variable).

This allows for shifts in the mean of Sales as a function of time.
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Fitting a Trend

The data for this regression looks like:

months(t) Sales

1 69.95

2 59.64

3 61.96

4 61.55

5 45.10

6 77.31

7 49.33

8 65.49

... ...

100 140.27
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Fitting a Trend

St = β0 + β1t + εt εt ∼ N(0, σ2)
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.892
R Square 0.796
Adjusted R Square 0.794
Standard Error 14.737
Observations 100.000

ANOVA
df SS MS F Significance F

Regression 1.000 82951.076 82951.076 381.944 0.000
Residual 98.000 21283.736 217.181
Total 99.000 104234.812

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 51.442 2.970 17.323 0.000 45.549 57.335
t 0.998 0.051 19.543 0.000 0.896 1.099

St = 51.44 + 0.998t ± 2 ∗ 14.73
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Fitting a Trend

Plug-in prediction...
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Residuals

How should our residuals look? If our model is correct, the trend

should have captured the time series structure is sales and what is

left, should not be associated with time... i.e., it should be iid

normal.
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Time Series Regression... Hotel Occupancy Case

In a recent legal case, a Chicago downtown hotel claimed that it

had suffered a loss of business due to what was considered an

illegal action by a group of hotels that decided to leave the plaintiff

out of a hotel directory.

In order to estimate the loss business, the hotel had to predict

what its level of business (in terms of occupancy rate) would have

been in the absence of the alleged illegal action.

In order to do this, experts testifying on behalf of the hotel use

data collected before the period in question and fit a relationship

between the hotels occupancy rate and overall occupancy rate in

the city of Chicago. This relationship would then be used to

predict occupancy rate during the period in question.
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Example: Hotel Occupancy Case

Hotelt = β0 + β1Chicago + εt

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.7111011
R Square 0.5056648
Adjusted R Squa 0.48801
Standard Error 7.5055176
Observations 30

ANOVA
df SS MS F Significance F

Regression 1 1613.468442 1613.4684 28.64172598 1.06082E-05
Residual 28 1577.318225 56.332794
Total 29 3190.786667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 16.135666 8.518889357 1.8941044 0.068584205 -1.314487337 33.5858198
ChicagoInd 0.7161318 0.133811486 5.3517965 1.06082E-05 0.442031445 0.990232246

I In the month after the omission from the directory the

Chicago occupancy rate was 66. The plaintiff claims that its

occupancy rate should have been 16 + 0.71*66 = 62.

I It was actually 55!! The difference added up to a big loss!!
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Example: Hotel Occupancy Case

A statistician was hired by the directory to access the regression

methodology used to justify the claim. As we should know by now,

the first thing he looked at was the residual plot...
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Example: Hotel Occupancy Case

... this is a time series regression, as we are regressing one time

series on another.

In this case, we should also check whether or not the residuals

show some temporal pattern.

If our model is correct the residuals should look iid normal over

time.
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Example: Hotel Occupancy Case
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Does this look iid to you? Can you guess what does the red line

represent?
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Example: Hotel Occupancy Case

It looks like part of hotel occupancy (y) not explained by the

Chicago downtown occupancy (x) is moving down over time. We

can try to control for that by adding a trend factor to our model...

Hotelt = β0 + β1Chicago + β2t + εt

u

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.869389917
R Square 0.755838827
Adjusted R Sq 0.737752815
Standard Error 5.37162026
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 2411.720453 1205.86 41.79134652 5.41544E-09
Residual 27 779.0662139 28.8543
Total 29 3190.786667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 26.69391108 6.418837165 4.158683 0.000290493 13.52354525 39.8642769
ChicagoInd 0.69523791 0.095849831 7.253408 8.41391E-08 0.498570304 0.89190552
t -0.596476666 0.113404099 -5.259745 1.51653E-05 -0.82916265 -0.3637907 18



Example: Hotel Occupancy Case
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Much better!! What is the slope of the red line?
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Example: Hotel Occupancy Case

Okay, what happened?!

Well, once we account for the downward trend in the occupancy of

the plaintiff, the prediction for the occupancy rate is

26 + 0.69 ∗ 66− 0.59 ∗ 31 = 53.25

What do we conclude?
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Example: Hotel Occupancy Case

Take away lessons...

I When regressing a time series on another, always check the

residuals as a time series

I What does that mean... plot the residuals over time. If all is

well, you should see no patterns, i.e., they should behave like

iid normal samples.
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Example: Hotel Occupancy Case

Question

I What if we were interested in predicting the hotel occupancy

ten years from now?? We should compute

26 + 0.69 ∗ 66− 0.59 ∗ 150 = −16.96

I Would you trust this prediction? Could you defend it in court?

I Remember: always be careful with extrapolating relationships!
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Examples: Temperatures
Now you need to predict tomorrow’s temperature at O’Hare from

(Jan-Feb).
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Does this look iid? If it is iid, tomorrow’s temperatures should not

depend on today’s... does that make sense? 23



Checking for Dependence

To see if Yt−1 would be useful for predicting Yt , just plot them

together and see if there is a relationship.
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Correlation between Yt and Yt−1 is called autocorrelation.
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Checking for Dependence

You need to create a “lagged” variable tempt−1... the data looks

like this:

t temp(t) temp(t-1)

1 42 35

2 41 42

3 50 41

4 19 50

5 19 19

6 20 19

... ...
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Checking for Dependence

We can plot Yt against Yt−L to see L-period lagged relationships.
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I It appears that the correlation is getting weaker with increasing L.

I How can we test for this dependence?
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The AR(1) Model

A simple way to model dependence over time in with the

autoregressive model of order 1...

Yt = β0 + β1Yt−1 + εt

I What is the mean of Yt for a given value of Yt−1?

I If the model successfully captures the dependence structure in

the data then the residuals should look iid.

I Remember: if our data is collected in time, we should always

check for dependence in the residuals...
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The AR(1) Model

Again, the regression tool is our friend here... (Why?)

q

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.722742583
R Square 0.522356842
Adjusted R S 0.5138275
Standard Erro 8.789861051
Observations 58

ANOVA
df SS MS F Significance F

Regression 1 4731.684433 4731.684433 61.24233673 1.49699E-10
Residual 56 4326.652809 77.2616573
Total 57 9058.337241

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 6.705800085 2.516614758 2.664611285 0.010050177 1.664414964 11.74718521
X Variable 1 0.723288866 0.092424243 7.825748317 1.49699E-10 0.53814086 0.908436873
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The AR(1) Model
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The AR(1) Model
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Again, looks good... 30



The Seasonal Model

I Many time-series data exhibit some sort of seasonality

I The simplest solution is to add a set of dummy variables to

deal with the “seasonal effects”
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Yt = monthly U.S. beer production (in millions of barrels).
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The Seasonal Model

S

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.959010553
R Square 0.919701241
Adjusted R Square 0.904979802
Standard Error 0.588667988
Observations 72

ANOVA
df SS MS F Significance F

Regression 11 238.138728 21.649 62.47359609 1.20595E-28
Residual 60 20.7918 0.34653
Total 71 258.930528

Coefficients tandard Erro t Stat P-value Lower 95% Upper 95%
Intercept 13.24166667 0.2403227 55.0995 4.32368E-53 12.7609497 13.72238
X Variable 1 1.911666667 0.33986762 5.62474 5.15088E-07 1.23183021 2.591503
X Variable 2 1.693333333 0.33986762 4.98233 5.64079E-06 1.013496877 2.37317
X Variable 3 3.936666667 0.33986762 11.5829 6.13313E-17 3.25683021 4.616503
X Variable 4 3.983333333 0.33986762 11.7202 3.74305E-17 3.303496877 4.66317
X Variable 5 5.083333333 0.33986762 14.9568 6.59589E-22 4.403496877 5.76317
X Variable 6 5.19 0.33986762 15.2707 2.44866E-22 4.510163543 5.869836
X Variable 7 4.978333333 0.33986762 14.6479 1.77048E-21 4.298496877 5.65817
X Variable 8 4.581666667 0.33986762 13.4807 8.22861E-20 3.90183021 5.261503
X Variable 9 2.016666667 0.33986762 5.93368 1.58522E-07 1.33683021 2.696503
X Variable 10 1.923333333 0.33986762 5.65907 4.52211E-07 1.243496877 2.60317
X Variable 11 0.118333333 0.33986762 0.34817 0.728927584 -0.561503123 0.79817

Let’s look at the Excel file... 32



The Seasonal Model
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What would our future predictions look like? 33



The Seasonal Model
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The Seasonal Model
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Still, no obvious problems... 35



Airline Data

Monthly passengers in the U.S. airline industry (in 1,000 of

passengers) from 1949 to 1960... we need to predict the number of

passengers in the next couple of months.
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Any ideas?
36



Airline Data

How about a “trend model”? Yt = β0 + β1t + εt
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What do you think?
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Airline Data

Let’s look at the residuals...
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Is there any obvious pattern here? YES!!
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Airline Data

The variance of the residuals seems to be growing in time... Let’s

try taking the log. log(Yt) = β0 + β1t + εt
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Any better?
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Airline Data

Residuals...
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Still we can see some obvious temporal/seasonal pattern....
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Airline Data

Okay, let’s add dummy variables for months (only 11 dummies)...

log(Yt) = β0 + β1t + β2Jan + ...β12Dec + εt
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Much better!!
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Airline Data

Residuals...
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I am still not happy... it doesn’t look normal iid to me...
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Airline Data

Residuals...
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I was right! The residuals are dependent on time...
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Airline Data

We have one more tool... let’s add one legged term.

log(Yt) = β0 + β1t + β2Jan + ...β12Dec + β13 log(Yt−1) + εt
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Okay, good...
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Airline Data

Residuals...
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Much better!! 45



Airline Data

Residuals...
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Much better indeed!! 46



Summary

Whenever working with time series data we need to look for

dependencies over time.

We can deal with lots of types of dependencies by using regression

models... our tools are:

I trends

I lags

I seasonal dummies
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Binary Response Data

Let’s now look at data where the response Y

is a binary variable (taking the value 0 or 1).

I Win or lose.

I Sick or healthy.

I Buy or not buy.

I Pay or default.

I Thumbs up or down.

The goal is generally to predict the probability that Y = 1, and

you can then do classification based on this estimate.
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Binary Response Data

Y is an indicator: Y = 0 or 1. The conditional mean is thus

E[Y |X ] = p(Y = 1|X )× 1 + p(Y = 0|X )× 0 = p(Y = 1|X )

The mean function is a probability: We need a model that gives

mean/probability values between 0 and 1.

We’ll use a transform function that takes the right-hand side of the

model (x′β) and gives back a value between zero and one.
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Binary Response Data

The binary choice model is

p(Y = 1|X1 . . .Xd) = S(β0 + β1X1 . . .+ βdXd)

where S is a function that increases in value from zero to one.

50



Binary Response Data

There are two main functions that are used for this:

I Logistic Regression: S(z) =
ez

1 + ez
.

I Probit Regression: S(z) = pnorm(z).

Both functions are S-shaped and take values in (0, 1).

Probit is used by economists, logit by biologists, and the rest of us

are fairly indifferent: they result in practically the same fit.
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Logistic Regression

We’ll use logistic regression, such that

p(Y = 1|X1 . . .Xd) =
exp[β0 + β1X1 . . .+ βdXd ]

1 + exp[β0 + β1X1 . . .+ βdXd ]

The “logit” link is more common, and it’s the default in R.

These models are easy to fit in R:

glm(Y ∼ X1 + X2, family=binomial)

“g” stands for generalized, and binomial indicates Y = 0 or 1.

Otherwise, generalized linear models use the same syntax as lm().
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Logistic Regression

What is happening here? Instead of least-squares,

glm is maximizing the product of probabilities:

n∏
i=1

P(Yi |xi ) =
n∏

i=1

(
exp[x′b]

1 + exp[x′b]

)Yi
(

1

1 + exp[x′b]

)1−Yi

This maximizes the likelihood of our data

(which is also what least-squares did).
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Logistic Regression

The important things are basically the same as before:

I Individual parameter p-values are interpreted as always.

I extractAIC(reg,k=log(n)) will get your BICs.

I The predict function works as before, but you need to add type =

‘‘response’’ to get p̂i = exp[x′b]/(1 + exp[x′b])

(otherwise it just returns the linear function x′β).

Unfortunately, techniques for residual diagnostics and model

checking are different (but we’ll not worry about that today).

Also, without sums of squares there are no R2, anova, or F -tests!
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Example: Basketball Spreads

NBA basketball point spreads: we have Las Vegas betting point

spreads for 553 NBA games and the resulting scores.

We can use logistic regression of scores onto spread to predict the

probability of the favored team winning.

I Response: favwin=1 if favored team wins.

I Covariate: spread is the Vegas point spread.
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Example: Basketball Spreads

This is a weird situation where we assume is no intercept.

I There is considerable evidence that betting odds are efficient.

I A spread of zero implies p(win) = 0.5 for each team.

I Thus p(win) = exp[β0]/(1 + exp[β0]) = 1/2⇔ β0 = 0.

The model we want to fit is thus

p(favwin|spread) =
exp[β × spread ]

1 + exp[β × spread ]
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Example: Basketball Spreads

summary(nbareg <- glm(favwin ∼ spread-1, family=binomial))

Some things are different (z not t) and some are missing (F , R2).
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Example: Basketball Spreads

The fitted model is

p(favwin|spread) =
exp[0.156× spread ]

1 + exp[0.156× spread ]
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Example: Basketball Spreads

We could consider other models... and compare with BIC!

Our “Efficient Vegas” model:

> extractAIC(nbareg, k=log(553))

1.000 534.287

A model that includes non-zero intercept:
> extractAIC(glm(favwin ∼ spread, family=binomial), k=log(553))

2.0000 540.4333

What if we throw in home-court advantage?
> extractAIC(glm(favwin ∼ spread+favhome, family=binomial), k=log(553))

3.0000 545.6371

The simplest model is best
(The model probabilities are 19/20, 1/20, and zero.)
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Example: Basketball Spreads

Let’s use our model to predict the result of a game:

I Portland vs Golden State: spread is PRT by 8

p(PRT win) =
exp[0.156× 8]

1 + exp[0.156× 8]
= 0.78

I Chicago vs Orlando: spread is ORL by 4

p(CHI win) =
1

1 + exp[0.156× 4]
= 0.35
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Example: Credit Scoring

A common business application of logistic regression is in

evaluating the credit quality of (potential) debtors.

I Take a list of borrower characteristics.

I Build a prediction rule for their credit.

I Use this rule to automatically evaluate applicants

(and track your risk profile).

You can do all this with logistic regression, and then use the

predicted probabilities to build a classification rule.
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Example: Credit Scoring

We have data on 1000 loan applicants at German community

banks, and judgement of the loan outcomes (good or bad).

The data has 20 borrower characteristics, including

I Credit history (5 categories).

I Housing (rent, own, or free).

I The loan purpose and duration.

I Installment rate as a percent of income.
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Example: Credit Scoring

We can use forward step wise regression to build a model.

null <- glm(Y ∼ history3, family=binomial, data=credit[train,])

full <- glm(Y ∼., family=binomial, data=credit[train,])

reg <- step(null, scope=formula(full), direction="forward", k=log(n))

.

.

.

Step: AIC=882.94

Y[train] ∼ history3 + checkingstatus1 + duration2 + installment8

The null model has credit history as a variable, since I’d include

this regardless, and we’ve left-out 200 points for validation.
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Classification

A common goal with logistic regression is to classify the inputs

depending on their predicted response probabilities.

For example, we might want to classify the German borrowers as

having “good” or “bad” credit (i.e., do we loan to them?).

A simple classification rule is to say that anyone with

p(good |x) > 0.5 can get a loan, and the rest do not.
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Example: Credit Scoring

Let’s use the validation set to compare this and the full model.

> full <- glm(formula(terms(Y[train] ∼., data=covars)),

data=covars[train,], family=binomial)

> predreg <- predict(reg, newdata=covars[-train,], type="response")

> predfull <- predict(full, newdata=covars[-train,], type="response")

> # 1 = false negative, -1 = false positive

> errorreg <- Y[-train]-(predreg >= .5)

> errorfull <- Y[-train]-(predfull >= .5)

> # misclassification rates:

> mean(abs(errorreg))

0.220

> mean(abs(errorfull))

0.265

Our model classifies borrowers correctly 78% of the time.
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Classification

You can also do classification with cut-offs other than 1/2.

I Suppose the risk associated with one action is

higher than for the other.

I You’ll want to have p > 0.5 of a positive outcome

before taking the risky action.
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k-Nearest Neighbors (kNN)

The k-nearest neighbors algorithm will try to predict (numerical

variables) or classify (categorical variables) based on similar records

on the training dataset.

Remember, the problem is to guess a future value yf given new

values of the covariates Xf = (x1f , x2f , x3f , . . . , xpf ).
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k-Nearest Neighbors (kNN)

kNN: How do the y ′s look like close to the region around Xf ?

We need to find the k records in the training dataset that are close

to Xf . How? “Nearness” to the i th neighbor can be defined by:

di =

√√√√ p∑
j=1

(xjf − xji )2

Prediction:

I Numerical yf : take the average of the y ′s in the k-nearest

neighbors

I Categorical yf : take the most common category in the

k-nearest neighbors
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k-Nearest Neighbors (kNN) – Example

Forensic Glass Analysis

Classifying shards of glass

Refractive index, plus oxide %

Na, Mg, Al, Si, K, Ca, Ba, Fe.

6 possible glass types

WinF: float glass window

WinNF: non-float window

Veh: vehicle window

Con: container (bottles)

Tabl: tableware

Head: vehicle headlamp

3
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k-Nearest Neighbors (kNN) – Example

WinF WinNF Veh Con Tabl Head
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k-Nearest Neighbors (kNN) – Example
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k-Nearest Neighbors (kNN) – Example
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k-Nearest Neighbors (kNN) – Example
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k-Nearest Neighbors (kNN) – Example
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k-Nearest Neighbors (kNN) – Example

-2 -1 0 1 2 3 4

-2
0

2
4

5-nearest neighbor

Al

R
I

75



k-Nearest Neighbors (kNN)

Comments:

I kNN is simple and intuitive and yet very powerful! e.g.

Pandora, Nate Silver...

I Choice of k matters! Once again, we should rely on the

out-of-sample performance

I Deciding the cut-off for classification impacts the results

I Can we contrast kNN to Logistic Regression?
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Trees

Classification or Regression Trees are another example of

flexible, interpretable and powerful tools for prediction.

|Al < 1.775

Al < 1.39

RI < -0.93

Al < 1.225 RI < -0.125

RI < 0.95

RI < 5.075

RI < 1.37

RI < -0.675

RI < -1.785 RI < -0.02

Al < 2.145

WinF Veh
WinF

WinNF

WinF WinNF

WinNF WinNF
WinF WinNF

Con

Head Head
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Trees

The main idea is to split the observations in the training data into

subgroups by partitioning each predictor into subregions

These partitions create a sequence of logical rules that are

intuitive, interpretable and easy to visualize!

Classification trees have class probabilities at the leaves.

Regression trees have a mean response at the leaves.
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Trees – Glass Example
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Growing Trees

Question: How do we choose a tree, ie, how do we define the

partitions in the space of the covariates?

One very popular alternative is to use the CART algorithm. It is a

recursive algorithm that goes as follows:

1. Choose the first split among all possible splits (for every xi )

that minimizes
∑n

i=1(yi − ŷi )
2

(or the error rate in classification trees)

2. For each newly defined subregion, repeat step 1.

3. Stop when no new split leads to a smaller sum of squared

error (or error rate)
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Tree Pruning: Improving prediction accuracy

A large tree (too many terminal nodes) may over fit the training

data! Usual problem with very flexible, large models...

Generally, one can improve the prediction ability of the model by

“pruning” the tree, ie, cutting down some terminal nodes

Again, this can (and should!) be done by comparing the

out-of-sample prediction performance.
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Tree Pruning: Improving prediction accuracy

Big tree Error Rate: 27% Pruned Tree Error Rate: 20%
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Trees – Comments

I Easy to explain and visualize

I Many modifications and options to “growing trees” are

available. For example, we might want to control the

minimum number of observations in each terminal node

I Lots of different algorithms available to grow trees

I Can be improved by mixing over a collection of trees...

Random Forests, BART... the idea is that the combination of

many simple trees might do better
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California Housing

Data: Medium home values in census tract plus the following

information:

I Location (latitude, longitude)

I Demographic information: population, income, etc...

I Average room/bedroom number, home age

Goal: Predict log(MediumValue) (why logs?)

Would a linear model be appropriate here? Should the effect of

each covariate be the same everywhere?
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California Housing

Models: Let’s compare the performance of the following models:

I Regression: LASSO plus interactions

I Regression Trees

I Random Forest
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California Housing: LASSO
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It chooses a very large model! 86



California Housing: LASSO

lasso fitted lasso resid

What do you see here... any patterns? 87



California Housing: Tree

|medianIncome < 3.5471

medianIncome < 2.51025
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California Housing: Tree

cart fitted cart resid

any better? 89



California Housing: Random Forest

rf fitted rf resid

Now? 90



California Housing: Out-of-Sample Performance
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