
Advanced Regression
Summer Statistics Institute

Day 3: Transformations and Non-Linear Models
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Regression Model Assumptions

Yi = β0 + β1Xi + ε

Recall the key assumptions of our linear regression model:

(i) The mean of Y is linear in X ′s.

(ii) The additive errors (deviations from line)

I are normally distributed

I independent from each other

I identically distributed (i.e., they have constant variance)

Yi |Xi∼N(β0 + β1Xi , σ
2)
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Regression Model Assumptions

Inference and prediction relies on this model being “true”!

If the model assumptions do not hold, then all bets are off:

I prediction can be systematically biased

I standard errors, intervals, and t-tests are wrong

We will focus on using graphical methods (plots!) to detect

violations of the model assumptions.
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Example
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Here we have two datasets... Which one looks compatible with our

modeling assumptions?
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Example

Week VII. Slide 13
Applied Regression Analysis 
Carlos M. Carvalho

(1)

(2)

Example where things can go bad!
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Example

The regression output values are exactly the same...
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Thus, whatever decision or action we might take based on the

output would be the same in both cases!
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Example

...but the residuals (plotted against Ŷ ) look totally different!!
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Residual Plots

We use residual plots to “diagnose” potential problems with the

model.

From the model assumptions, the error term (ε) should have a few

properties... we use the residuals (e) as a proxy for the errors as:

εi = yi − (β0 + β1x1i + β2x2i + · · ·+ βpxpi )

≈ yi − (b0 + b1x1i + b2x2i + · · ·+ bpxpi

= ei
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Residual Plots

What kind of properties should the residuals have??

ei ≈ N(0, σ2) iid and independent from the X’s

I We should see no pattern between e and each of the X ’s

I This can be summarized by looking at the plot between

Ŷ and e

I Remember that Ŷ is “pure X”, i.e., a linear function of the

X ’s.

If the model is good, the regression should have pulled out of Y all

of its “x ness”... what is left over (the residuals) should have

nothing to do with X .
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Example – Mid City (Housing)

Left: ŷ vs. y

Right: ŷ vs e

Example, the midcity housing regression:

Left: y vs fits, Right: fits vs. resids (ŷ vs. e).
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Example – Mid City (Housing)

Size vs. ex= size of house vs. resids for midcity multiple regression.

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!!

!
!

1.6 1.8 2.0 2.2 2.4 2.6

−3
0

−2
0

−1
0

0
10

20
30

size

re
si
ds

11



Example – Mid City (Housing)

I In the Mid City housing example, the residuals plots (both X

vs. e and Ŷ vs. e) showed no obvious problem...

I This is what we want!!

I Although these plots don’t guarantee that all is well it is a

very good sign that the model is doing a good job.
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Non Linearity

Example: Telemarketing

I How does length of employment affect productivity (number

of calls per day)?
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Non Linearity

Example: Telemarketing

I Residual plot highlights the non-linearity!
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Non Linearity

What can we do to fix this?? We can use multiple regression and

transform our X to create a no linear model...

Let’s try

Y = β0 + β1X + β2X
2 + ε

The data...

months months2 calls

10 100 18

10 100 19

11 121 22

14 196 23

15 225 25

... ... ... 15



Telemarketing
Adding Polynomials

Week VIII. Slide 5
Applied Regression Analysis 
Carlos M. Carvalho

Linear Model
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Telemarketing
Adding Polynomials

Week VIII. Slide 6
Applied Regression Analysis 
Carlos M. Carvalho

With X2
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TelemarketingAdding Polynomials

Week VIII. Slide 7
Applied Regression Analysis 
Carlos M. Carvalho
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Telemarketing

What is the marginal effect of X on Y?

∂E [Y |X ]

∂X
= β1 + 2β2X

I To better understand the impact of changes in X on Y you

should evaluate different scenarios.

I Moving from 10 to 11 months of employment raises

productivity by 1.47 calls

I Going from 25 to 26 months only raises the number of calls

by 0.27.
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Polynomial Regression

Even though we are limited to a linear mean, it is possible to get

nonlinear regression by transforming the X variable.

In general, we can add powers of X to get polynomial regression:

Y = β0 + β1X + β2X
2 . . .+ βmXm

You can fit any mean function if m is big enough.

Usually, m = 2 does the trick.
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Closing Comments on Polynomials

We can always add higher powers (cubic, etc) if necessary.

Be very careful about predicting outside the data range. The curve

may do unintended things beyond the observed data.

Watch out for over-fitting... remember, simple models are

“better”.
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Be careful when extrapolating...
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...and, be careful when adding more polynomial terms!
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Variable Interaction

So far we have considered the impact of each independent variable

in a additive way.

We can extend this notion by the inclusion of multiplicative effects

through interaction terms. This provides another way to model

non-linearities

Yi = β0 + β1X1i + β2X2i + β3(X1iX2i) + ε

∂E [Y |X1,X2]

∂X1
= β1 + β3X2

What does that mean?
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Example: College GPA and Age

Consider the connection between college and MBA grades:

A model to predict McCombs GPA from college GPA could be

GPAMBA = β0 + β1GPABach + ε

Estimate Std.Error t value Pr(>|t|)

BachGPA 0.26269 0.09244 2.842 0.00607 **

For every 1 point increase in college GPA, your expected

GPA at McCombs increases by about .26 points.
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College GPA and Age

However, this model assumes that the marginal effect

of College GPA is the same for any age.

It seems that how you did in college should have less effect on your

MBA GPA as you get older (farther from college).

We can account for this intuition with an interaction term:

GPAMBA = β0 + β1GPABach + β2(Age × GPABach) + ε

Now, the college effect is ∂E [GPAMBA|GPABach Age]
∂GPABach = β1 + β2Age.

Depends on Age!
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College GPA and Age

GPAMBA = β0 + β1GPABach + β2(Age × GPABach) + ε

Here, we have the interaction term but do not the main effect of

age... what are we assuming?

Estimate Std.Error t value Pr(>|t|)

BachGPA 0.455750 0.103026 4.424 4.07e-05 ***

BachGPA:Age -0.009377 0.002786 -3.366 0.00132 **
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College GPA and Age

Without the interaction term

I Marginal effect of College GPA is b1 = 0.26.

With the interaction term:

I Marginal effect is b1 + b2Age = 0.46− 0.0094Age.

Age Marginal Effect

25 0.22

30 0.17

35 0.13

40 0.08
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Non-constant Variance

Example...

This violates our assumption that all εi have the same σ2.
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Non-constant Variance

Consider the following relationship between Y and X :

Y = γ0X
β1(1 + R)

where we think about R as a random percentage error.

I On average we assume R is 0...

I but when it turns out to be 0.1, Y goes up by 10%!

I Often we see this, the errors are multiplicative and the

variation is something like ±10% and not ±10.

I This leads to non-constant variance (or heteroskedasticity)
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The Log-Log Model

We have data on Y and X and we still want to use a linear

regression model to understand their relationship... what if we take

the log (natural log) of Y ?

log(Y ) = log
[
γ0X

β1(1 + R)
]

log(Y ) = log(γ0) + β1 log(X ) + log(1 + R)

Now, if we call β0 = log(γ0) and ε = log(1 + R) the above leads to

log(Y ) = β0 + β1 log(X ) + ε

a linear regression of log(Y ) on log(X )!
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The Log-Log Model

Consider a country’s GDP as a function of IMPORTS :

I Since trade multiplies, we might expect to

see %GDP to increase with %IMPORTS .
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Elasticity and the log-log Model

In a log-log model, the slope β1 is sometimes called elasticity.

In english, a 1% increase in X gives a beta % increase in Y.

β1 ≈
d%Y

d%X
(Why?)

For example, economists often assume that GDP has import

elasticity of 1. Indeed,

log(GDP) = β0 + β1 log(IMPORTS)

Coefficients:

(Intercept) log(IMPORTS)

1.8915 0.9693
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Price Elasticity

In economics, the slope coefficient β1 in the regression

log(sales) = β0 + β1 log(price) + ε is called price elasticity.

This is the % change in sales per 1% change in price.

The model implies that E [sales] = A ∗ priceβ1

where A = exp(β0)
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Price Elasticity of OJ

A chain of gas station convenience stores was interested in the

dependency between price of and Sales for orange juice...

They decided to run an experiment and change prices randomly at

different locations. With the data in hands, let’s first run an

regression of Sales on Price:

Sales = β0 + β1Price + ε
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.719
R Square 0.517
Adjusted R Square 0.507
Standard Error 20.112
Observations 50.000

ANOVA
df SS MS F Significance F

Regression 1.000 20803.071 20803.071 51.428 0.000
Residual 48.000 19416.449 404.509
Total 49.000 40219.520

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 89.642 8.610 10.411 0.000 72.330 106.955
Price -20.935 2.919 -7.171 0.000 -26.804 -15.065 35



Price Elasticity of OJ
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No good!!
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Price Elasticity of OJ

But... would you really think this relationship would be linear?

Moving a price from $1 to $2 is the same as changing it form $10

to $11?? We should probably be thinking about the price elasticity

of OJ...
log(Sales) = γ0 + γ1 log(Price) + ε

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.869
R Square 0.755
Adjusted R Square 0.750
Standard Error 0.386
Observations 50.000

ANOVA
df SS MS F Significance F

Regression 1.000 22.055 22.055 148.187 0.000
Residual 48.000 7.144 0.149
Total 49.000 29.199

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4.812 0.148 32.504 0.000 4.514 5.109
LogPrice -1.752 0.144 -12.173 0.000 -2.042 -1.463

How do we interpret γ̂1 = −1.75?

(When prices go up 1%, sales go down by 1.75%) 37



Price Elasticity of OJ
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Much better!!
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Making Predictions

What if the gas station store wants to predict their sales of OJ if

they decide to price it at $1.8?

The predicted log(Sales) = 4.812 + (−1.752)× log(1.8) = 3.78

So, the predicted Sales = exp(3.78) = 43.82.

How about the plug-in prediction interval?

In the log scale, our predicted interval in

[ ̂log(Sales)− 2s; ̂log(Sales) + 2s] =

[3.78− 2(0.38); 3.78 + 2(0.38)] = [3.02; 4.54].

In terms of actual Sales the interval is

[exp(3.02), exp(4.54)] = [20.5; 93.7]
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Making Predictions
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I In the log scale (right) we have [Ŷ − 2s; Ŷ + 2s]

I In the original scale (left) we have

[exp(Ŷ ) ∗ exp(−2s); exp(Ŷ ) exp(2s)] 40



Some additional comments...

I Another useful transformation to deal with non-constant

variance is to take only the log(Y ) and keep X the same.

Clearly the “elasticity” interpretation no longer holds.

I Always be careful in interpreting the models after a

transformation

I Also, be careful in using the transformed model to make

predictions
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Summary of Transformations

Coming up with a good regression model is usually an iterative

procedure. Use plots of residuals vs X or Ŷ to determine the next

step.

Log transform is your best friend when dealing with non-constant

variance (log(X ), log(Y ), or both).

Add polynomial terms (e.g. X 2) to get nonlinear regression.

The bottom line: you should combine what the plots and the

regression output are telling you with your common sense and

knowledge about the problem. Keep playing around with it until

you get something that makes sense and has nothing obviously

wrong with it. 42



Outliers

Body weight vs. brain weight...

X =body weight of a mammal in kilograms

Y =brain weight of a mammal in grams
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Do additive errors make sense here??

Also, what are the standardized residuals plotted above? 43



Standardized Residuals

In our model ε ∼ N(0, σ2)

The residuals e are a proxy for ε and the standard error s is an

estimate for σ

Call z = e/s, the standardized residuals... We should expect

z ≈ N(0, 1)

(How aften should we see an observation of |z | > 3?)
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Outliers

Let’s try logs...
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Great, a lot better!! But we see a large and positive potential

outlier... the Chinchilla!
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Outliers

It turns out that the data had the brain of a Chinchilla weighting

64 grams!! In reality, it is 6.4 grams... after correcting it:
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How to Deal with Outliers

When should you delete outliers?

Only when you have a really good reason!

There is nothing wrong with running regression with and without

potential outliers to see whether results are significantly impacted.

Any time outliers are dropped the reasons for

removing observations should be clearly noted.
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Other non-Linear Models

I We can always try to add more polynomial terms...

10 20 30

10
20

30
40

50

lstat

m
ed
v

48



Other non-Linear Models

I We can always try to add more polynomial terms...
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Other non-Linear Models

I We can always try to add more polynomial terms...
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Other non-Linear Models

I We can always try to add more polynomial terms...
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Other non-Linear Models

I Or use a different set of “Basis Function”

Yi = β0 + β1b1(Xi ) + β2b2(Xi ) + · · ·+ βpbp(Xi ) + εi

I Notice that this has a form of a linear model and can,

therefore, be estimated via LS.

I There are a million different choices of bases... we’ll focus on

the most popular one: Splines
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Regression Splines

I A spline works by fitting different low dimensional polynomials

over different regions of the predictor space

I The points where the coefficients change are called knots

I The more knots you use, the more flexibility you have (but

also more complexity!)
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Regression Splines
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Regression Splines
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Regression Splines
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Smoothing Splines

I This approach tries to battle complexity by imposing

“smoothness” constraints

I It looks for a function g that minimizes

N∑
i=1

(Yi − g(Xi ))2 + λ

∫
g ′′(t)2dt

I λ is the tuning parameter (greater than 0)... equivalent to

choosing the number of knots

I λ =∞ leads to linear regression... larger λ leads to complex

(wiggly) functions
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Smoothing Splines
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Smoothing Splines
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Smoothing Splines
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Choosing the Model

How do we evaluate a forecasting model? Make predictions!

Basic Idea: We want to use the model to forecast outcomes for

observations we have not seen before.

I Use the data to create a prediction problem.

I See how our candidate models perform.

We’ll use most of the data for training the model,

and the left over part for validating the model.
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Cross-Validation

In a cross-validation scheme, you fit a bunch of models to most of

the data (training sample) and choose the model

that performed the best on the rest (left-out sample).

I Use the model to obtain fitted Ŷj = x′jb values for all

of the NLO left-out data points.

I Calculate the Mean Square Error for these predictions.

MSE =
1

NLO

NLO∑
j=1

(Yj − Ŷj)
2

62



Generalized Additive Models (GAMs)

I We use “Gams” when we have more than one predictor

variable

I It tries to find a different non-linear function to connect each

X to Y ... and adds them all together (additive model).

Yi = β0 + f1(Xi1) + f2(Xi2) + · · ·+ fp(Xip) + ε
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Generalized Additive Models (GAMs)
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Generalized Additive Models (GAMs)
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Generalized Additive Models (GAMs)
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Out-of-Sample Comparison

I MSE for a randomly chosen 100 observations...

Method MSE

Ȳ 83.78 (13.70)

Linear Regression 29.59 (6.16)

GAM 18.94 (5.88)
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Model Building Process

When building a regression model remember that simplicity is your

friend... smaller models are easier to interpret and have fewer

unknown parameters to be estimated.

Keep in mind that every additional parameter represents a cost!!

The first step of every model building exercise is the selection of

the the universe of variables to be potentially used. This task is

entirely solved through you experience and context specific

knowledge...

I Think carefully about the problem

I Consult subject matter research and experts

I Avoid the mistake of selecting too many variables
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Model Building Process

With a universe of variables in hand, the goal now is to select the

model. Why not include all the variables in?

Big models tend to over-fit and find features that are specific to

the data in hand... ie, not generalizable relationships.

The results are bad predictions and bad science!

In addition, bigger models have more parameters and potentially

more uncertainty about everything we are trying to learn... (check

the beer and weight example!)

We need a strategy to build a model in ways that accounts for the

trade-off between fitting the data and the uncertainty associated

with the model 69



Out-of-Sample Prediction

One idea is to focus on the model’s ability to predict... How do we

evaluate a forecasting model? Make predictions!

Basic Idea: We want to use the model to forecast outcomes for

observations we have not seen before.

I Use the data to create a prediction problem.

I See how our candidate models perform.

We’ll use most of the data for training the model,

and the left over part for validating the model.
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Out-of-Sample Prediction

In a cross-validation scheme, you fit a bunch of models to most of

the data (training sample) and choose the model

that performed the best on the rest (left-out sample).

I Fit the model on the training data

I Use the model to predict Ŷj values for all of the NLO left-out

data points

I Calculate the Mean Square Error for these predictions

MSE =
1

NLO

NLO∑
j=1

(Yj − Ŷj)
2
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Example

To illustrate the potential problems of “over-fitting” the data, let’s

look again at the Telemarketing example... let’s look at multiple

polynomial terms...
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Example

Let’s evaluate the fit of each model by their R2

(on the training data)
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Example

How about the MSE?? (on the left-out data)
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BIC for Model Selection

Another way to evaluate a model is to use Information Criteria

metrics which attempt to quantify how well our model would have

predicted the data (regardless of what you’ve estimated for the

βj ’s).

A good alternative is the BIC: Bayes Information Criterion, which

is based on a “Bayesian” philosophy of statistics.

BIC = n log(s2) + p log(n)

You want to choose the model that leads to minimum BIC.
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BIC for Model Selection

One (very!) nice thing about the BIC is that you can

interpret it in terms of model probabilities.

Given a list of possible models {M1,M2, . . . ,MR}, the probability

that model i is correct is

P(Mi) ≈
e−

1
2
BIC(Mi )∑R

r=1 e−
1
2
BIC(Mr )

=
e−

1
2
[BIC(Mi )−BICmin]∑R

r=1 e−
1
2
[BIC(Mr )−BICmin]

(Subtract BICmin = min{BIC(M1) . . .BIC(MR)} for numerical stability.)
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BIC for Model Selection

Thus BIC is an alternative to testing for comparing models.

I It is easy to calculate.

I You are able to evaluate model probabilities.

I There are no “multiple testing” type worries.

I It generally leads to more simple models than F -tests.

As with testing, you need to narrow down your options before

comparing models. What if there are too many possibilities?
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Stepwise Regression

One computational approach to build a regression model

step-by-step is “stepwise regression” There are 3 options:

I Forward: adds one variable at the time until no remaining

variable makes a significant contribution (or meet a certain

criteria... could be out of sample prediction)

I Backwards: starts will all possible variables and removes one

at the time until further deletions would do more harm them

good

I Stepwise: just like the forward procedure but allows for

deletions at each step
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LASSO

The LASSO is a shrinkage method that performs automatic

selection. Yet another alternative... has similar properties as

stepwise regression but it is more automatic... R does it for you!

The LASSO solves the following problem:

arg minβ

{
N∑

i=1

(
Yi − X ′i β

)2
+ λ|β|

}

I Coefficients can be set exactly to zero (automatic model

selection)

I Very efficient computational method

I λ is often chosen via CV
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One informal but very useful idea to put it all together...

I like to build models from the bottom, up...

I Set aside a set of points to be your validating set (if dataset

large enought)
I Working on the training data, add one variable at the time

deciding which one to add based on some criteria:

1. larger increases in R2 while significant

2. larger reduction in MSE while significant

3. BIC, etc...

I at every step, carefully analyze the output and

check the residuals!

I Stop when no additional variable produces a “significant”

improvement

I Always make sure you understand what the model is doing in

the specific context of your problem
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