
Advanced Regression
Summer Statistics Institute

Day 2: MLR and Dummy Variables
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The Multiple Regression Model

Many problems involve more than one independent variable or

factor which affects the dependent or response variable.

I More than size to predict house price!

I Demand for a product given prices of competing brands,

advertising,house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple

Linear Regression (MLR) model extends this idea to include more

than one independent variable.

2



The MLR Model
Same as always, but with more covariates.

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

Recall the key assumptions of our linear regression model:

(i) The conditional mean of Y is linear in the Xj variables.

(ii) The error term (deviations from line)

I are normally distributed

I independent from each other

I identically distributed (i.e., they have constant variance)

Y |X1 . . .Xp ∼ N(β0 + β1X1 . . . + βpXp, σ
2)
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The MLR Model

Our interpretation of regression coefficients can be extended from

the simple single covariate regression case:

βj =
∂E [Y |X1, . . . ,Xp]

∂Xj

Holding all other variables constant, βj is the

average change in Y per unit change in Xj .

4



The MLR Model
If p = 2, we can plot the regression surface in 3D.

Consider sales of a product as predicted by price of this product

(P1) and the price of a competing product (P2).

Sales = β0 + β1P1 + β2P2 + ε
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Least Squares

Y = β0 + β1X1 . . .+ βpXp + ε, ε ∼ N(0, σ2)

How do we estimate the MLR model parameters?

The principle of Least Squares is exactly the same as before:

I Define the fitted values

I Find the best fitting plane by minimizing the sum of squared

residuals.
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Least Squares

The data...

p1 p2 Sales

5.1356702 5.2041860 144.48788

3.4954600 8.0597324 637.24524

7.2753406 11.6759787 620.78693

4.6628156 8.3644209 549.00714

3.5845370 2.1502922 20.42542

5.1679168 10.1530371 713.00665

3.3840914 4.9465690 346.70679

4.2930636 7.7605691 595.77625

4.3690944 7.4288974 457.64694

7.2266002 10.7113247 591.45483

... ... ...
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Least Squares

Model: Salesi = β0 + β1P1i + β2P2i + εi , ε ∼ N(0, σ2)SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00

ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24 3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

b0 = β̂0 = 115.72, b1 = β̂1 = −97.66, b2 = β̂2 = 108.80,

s = σ̂ = 28.42
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Plug-in Prediction in MLR

Suppose that by using advanced corporate espionage tactics, I

discover that my competitor will charge $10 the next quarter.

After some marketing analysis I decided to charge $8. How much

will I sell?

Our model is

Sales = β0 + β1P1 + β2P2 + ε

with ε ∼ N(0, σ2)

Our estimates are b0 = 115, b1 = −97, b2 = 109 and s = 28

which leads to

Sales = 115 +−97 ∗ P1 + 109 ∗ P2 + ε

with ε ∼ N(0, 282)
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Plug-in Prediction in MLR

By plugging-in the numbers,

Sales = 115 +−97 ∗ 8 + 109 ∗ 10 + ε

= 437 + ε

Sales|P1 = 8,P2 = 10 ∼ N(437, 282)

and the 95% Prediction Interval is (437± 2 ∗ 28)

381 < Sales < 493
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Least Squares

Just as before, each bi is our estimate of βi

Fitted Values: Ŷi = b0 + b1X1i + b2X2i . . .+ bpXp.

Residuals: ei = Yi − Ŷi .

Least Squares: Find b0, b1, b2, . . . , bp to minimize
∑n

i=1 e2
i .

In MLR the formulas for the bi ’s are too complicated so we won’t

talk about them...
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Least Squares

12



Least Squares

p1 p2 Sales yhat residuals b0 b1 b2
5.13567 5.204186 144.4879 184.0963 -39.60838 115 -97 109
3.49546 8.059732 637.2452 654.4512 -17.20597

7.275341 11.67598 620.7869 681.9736 -61.18671
4.662816 8.364421 549.0071 574.4288 -25.42163
3.584537 2.150292 20.42542 1.681753 18.74367
5.167917 10.15304 713.0067 720.3931 -7.386461
3.384091 4.946569 346.7068 325.9192 20.78763
4.293064 7.760569 595.7762 544.4749 51.30139
4.369094 7.428897 457.6469 500.9477 -43.30072

7.2266 10.71132 591.4548 581.5542 9.900659

Excel break: fitted values, residuals,...
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Residual Standard Error

The calculation for s2 is exactly the same:

s2 =

∑n
i=1 e2

i

n − p − 1
=

∑n
i=1(Yi − Ŷi)

2

n − p − 1

I Ŷi = b0 + b1X1i + · · ·+ bpXpi

I The residual “standard error” is the estimate for the standard

deviation of ε,i.e,

σ̂ = s =
√

s2.
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Residuals in MLR

As in the SLR model, the residuals in multiple regression are

purged of any linear relationship to the independent variables.

Once again, they are on average zero.

Because the fitted values are an exact linear combination of the

X ’s they are not correlated to the residuals.

We decompose Y into the part predicted by X and the part due to

idiosyncratic error.

Y = Ŷ + e

ē = 0; corr(Xj , e) = 0; corr(Ŷ , e) = 0
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Residuals in MLR

Consider the residuals from the Sales data:
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Fitted Values in MLR
Another great plot for MLR problems is to look at

Y (true values) against Ŷ (fitted values).
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If things are working, these values should form a nice straight line. Can

you guess the slope of the blue line? 17



Fitted Values in MLR
With just P1...
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I Left plot: Sales vs P1

I Right plot: Sales vs. ŷ (only P1 as a regressor) 18



Fitted Values in MLR

Now, with P1 and P2...
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I First plot: Sales regressed on P1 alone...

I Second plot: Sales regressed on P2 alone...

I Third plot: Sales regressed on P1 and P2
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R-squared

I We still have our old variance decomposition identity...

SST = SSR + SSE

I ... and R2 is once again defined as

R2 =
SSR

SST
= 1− SSE

SST

telling us the percentage of variation in Y explained by the

X ’s.

I In Excel, R2 is in the same place and “Multiple R” refers to

the correlation between Ŷ and Y .

20



Least Squares

Salesi = β0 + β1P1i + β2P2i + εiSUMMARY OUTPUT

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00

ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24 3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

R2 = 0.99

Multiple R = rY ,Ŷ = corr(Y ,Ŷ ) = 0.99

Note that R2 = corr(Y , Ŷ )2
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Back to Baseball

R/G = β0 + β1OBP + β2SLG + ε

t o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.955698
R Square 0.913359
Adjusted R Square 0.906941
Standard Error 0.148627
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 6.28747 3.143735 142.31576 4.56302E‐15
Residual 27 0.596426 0.02209
Total 29 6.883896

Coefficients andard Err t Stat P‐value Lower 95% Upper 95%
Intercept ‐7.014316 0.81991 ‐8.554984 3.60968E‐09 ‐8.69663241 ‐5.332
OBP 27.59287 4.003208 6.892689 2.09112E‐07 19.37896463 35.80677
SLG 6.031124 2.021542 2.983428 0.005983713 1.883262806 10.17899

R2 = 0.913

Multiple R = rY ,Ŷ = corr(Y ,Ŷ ) = 0.955

Note that R2 = corr(Y , Ŷ )2
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Intervals for Individual Coefficients

As in SLR, the sampling distribution tells us how close we can

expect bj to be from βj

The LS estimators are unbiased: E [bj ] = βj for j = 0, . . . , d .

I We denote the sampling distribution of each estimator as

bj ∼ N(βj , s
2
bj

)
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Intervals for Individual Coefficients

Intervals and t-statistics are exactly the same as in SLR.

I A 95% C.I. for βj is approximately bj ± 2sbj

I The t-stat: tj =
(bj − β0

j )

sbj

is the number of standard errors

between the LS estimate and the null value (β0
j )

I As before, we reject the null when t-stat is greater than 2 in

absolute value

I Also as before, a small p-value leads to a rejection of the null

I Rejecting when the p-value is less than 0.05 is equivalent to

rejecting when the |tj | > 2
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Intervals for Individual Coefficients

IMPORTANT: Intervals and testing via bj & sbj
are one-at-a-time

procedures:

I You are evaluating the j th coefficient conditional on the other

X ’s being in the model, but regardless of the values you’ve

estimated for the other b’s.
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In Excel... Do we know all of these numbers?
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00

ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24 3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

95% C.I. for β1 ≈ b1± 2× sb1

[−97.66− 2× 2.67;−97.66 + 2× 2.67] = [−102.95;−92.36]
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Understanding Multiple Regression

I There are two, very important things we need to understand

about the MLR model:

1. How dependencies between the X ’s affect our interpretation of

a multiple regression;

2. How dependencies between the X ’s inflate standard errors (aka

multicolinearity)

I We will look at a few examples to illustrate the ideas...
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Understanding Multiple Regression

The Sales Data:

I Sales : units sold in excess of a baseline

I P1: our price in $ (in excess of a baseline price)

I P2: competitors price (again, over a baseline)
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Understanding Multiple Regression

I If we regress Sales on our own price, we obtain a somewhat

surprising conclusion... the higher the price the more we sell!!

27

The Sales Data

In this data we have weekly observations on
sales:# units (in excess of base level)
p1=our price: $ (in excess of base)
p2=competitors price: $ (in excess of base).

p1 p2 Sales
5.13567 5.2042 144.49
3.49546 8.0597 637.25
7.27534 11.6760 620.79
4.66282 8.3644 549.01
...
...

(each row corresponds
to a week)

If we regress
Sales on 
own price,
we obtain the
somewhat
surprising
conclusion
that a higher
price is associated
with more sales!!

9876543210

1000

 500

   0

p1

S
al

es
S = 223.401      R-Sq = 19.6 %      R-Sq(adj) = 18.8 %

Sales = 211.165 + 63.7130 p1

Regression Plot

The regression line
has a positive slope !!

I It looks like we should just raise our prices, right? NO, not if

you have taken this statistics class!
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Understanding Multiple Regression

I The regression equation for Sales on own price (P1) is:

Sales = 211 + 63.7P1

I If now we add the competitors price to the regression we get

Sales = 116− 97.7P1 + 109P2

I Does this look better? How did it happen?

I Remember: −97.7 is the affect on sales of a change in P1

with P2 held fixed!!
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Understanding Multiple Regression

I How can we see what is going on? Let’s compare Sales in two

different observations: weeks 82 and 99.

I We see that an increase in P1, holding P2 constant,

corresponds to a drop in Sales!

28

Sales on own price:

The multiple regression of Sales on own price (p1) and
competitor's price (p2) yield more intuitive signs:

How does this happen ?

The regression equation is
Sales = 211 + 63.7 p1

The regression equation is
Sales = 116 - 97.7 p1 + 109 p2

Remember: -97.7 is the affect on sales of a change in
p1 with p2 held fixed !!
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If we compares sales in weeks 82 and 99, we 
see that an increase in p1, holding p2 constant
(82 to 99) corresponds to a drop is sales.

How can we see what is going on ?

Note the strong relationship between p1 and p2 !!I Note the strong relationship (dependence) between P1 and

P2!! 31



Understanding Multiple Regression

I Let’s look at a subset of points where P1 varies and P2 is

held approximately constant...
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Here we select a subset of points where p varies
and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
correlated with sale!
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I For a fixed level of P2, variation in P1 is negatively correlated

with Sales!!
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Understanding Multiple Regression

I Below, different colors indicate different ranges for P2...
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and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
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Understanding Multiple Regression

I Summary:

1. A larger P1 is associated with larger P2 and the overall effect

leads to bigger sales

2. With P2 held fixed, a larger P1 leads to lower sales

3. MLR does the trick and unveils the “correct” economic

relationship between Sales and prices!
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Understanding Multiple Regression

Beer Data (from an MBA class)

I nbeer – number of beers before getting drunk

I height and weight

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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to height ?

Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

Is number of beers related to height? 35



Understanding Multiple Regression

nbeers = β0 + β1height + ε
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.58
R Square 0.34
Adjusted R Square 0.33
Standard Error 3.11
Observations 50.00

ANOVA
df SS MS F Significance F

Regression 1.00 237.77 237.77 24.60 0.00
Residual 48.00 463.86 9.66
Total 49.00 701.63

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -36.92 8.96 -4.12 0.00 -54.93 -18.91
height 0.64 0.13 4.96 0.00 0.38 0.90

Yes! Beers and height are related...
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Understanding Multiple Regression

nbeers = β0 + β1weight + β2height + ε
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.69
R Square 0.48
Adjusted R Square 0.46
Standard Error 2.78
Observations 50.00

ANOVA
df SS MS F Significance F

Regression 2.00 337.24 168.62 21.75 0.00
Residual 47.00 364.38 7.75
Total 49.00 701.63

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -11.19 10.77 -1.04 0.30 -32.85 10.48
weight 0.09 0.02 3.58 0.00 0.04 0.13
height 0.08 0.20 0.40 0.69 -0.32 0.47

What about now?? Height is not necessarily a factor...
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Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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Is nbeer related
to height ?

Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I If we regress “beers” only on height we see an effect. Bigger

heights go with more beers.

I However, when height goes up weight tends to go up as well...

in the first regression, height was a proxy for the real cause of

drinking ability. Bigger people can drink more and weight is a

more accurate measure of “bigness”. 38



Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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to height ?

Yes,
very clearly.

200150100

75

70

65

60

weight

he
ig

ht

Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I In the multiple regression, when we consider only the variation

in height that is not associated with variation in weight, we

see no relationship between height and beers.

39



Understanding Multiple Regression

nbeers = β0 + β1weight + εSUMMARY OUTPUT

Regression Statistics
Multiple R 0.69
R Square 0.48
Adjusted R Square0.47
Standard Error 2.76
Observations 50

ANOVA
df SS MS F Significance F

Regression 1 336.0317807 336.0318 44.11878 2.60227E-08
Residual 48 365.5932193 7.616525
Total 49 701.625

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -7.021 2.213 -3.172 0.003 -11.471 -2.571
weight 0.093 0.014 6.642 0.000 0.065 0.121

Why is this a better model than the one with weight and height??
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Understanding Multiple Regression

In general, when we see a relationship between y and x (or x ’s),

that relationship may be driven by variables “lurking” in the

background which are related to your current x ’s.

This makes it hard to reliably find “causal” relationships. Any

correlation (association) you find could be caused by other

variables in the background... correlation is NOT causation

Any time a report says two variables are related and there’s a

suggestion of a “causal” relationship, ask yourself whether or not

other variables might be the real reason for the effect. Multiple

regression allows us to control for all important variables by

including them into the regression. “Once we control for weight,

height and beers are NOT related”!! 41



Understanding Multiple Regression

I With the above examples we saw how the relationship

amongst the X ’s can affect our interpretation of a multiple

regression... we will now look at how these dependencies will

inflate the standard errors for the regression coefficients, and

hence our uncertainty about them.

I Remember that in simple linear regression our uncertainty

about b1 is measured by

s2
b1

=
s2

(n − 1)s2
x

=
s2∑n

i=1 (Xi − X̄ )2

I The more variation in X (the larger s2
x ) the more “we know”

about β1... ie, (b1 − β1) is smaller.

42



Understanding Multiple Regression

I In Multiple Regression we seek to relate the variation in Y to

the variation in an X holding the other X ’s fixed. So, we need

to see how much each X varies on its own.

I in MLR, the standard errors are defined by the following

formula:

s2
bj

=
s2

variation in Xj not associated with other X ’s

I How do we measure the bottom part of the equation? We

regress Xj on all the other X ’s and compute the residual sum

of squares (call it SSEj) so that

s2
bj

=
s2

SSEj
43



Understanding Multiple Regression

In the “number of beers example”... s = 2.78 and the regression

on height on weight gives...

r

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.806
R Square 0.649
Adjusted R Squa 0.642
Standard Error 2.051
Observations 50.000

ANOVA
df SS MS F Significance F

Regression 1.000 373.148 373.148 88.734 0.000
Residual 48.000 201.852 4.205
Total 49.000 575.000

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 53.751 1.645 32.684 0.000 50.444 57.058
weight 0.098 0.010 9.420 0.000 0.077 0.119

SSE2 = 201.85

sb2 =

√
2.782

201.85
= 0.20 Is this right? 44



Understanding Multiple Regression

I What happens if we are regressing Y on X ’s that are highly

correlated. SSEj goes down and the standard error sbj
goes

up!

I What is the effect on the confidence intervals (bj ± 2× sbj
)?

They get wider!

I This situation is called Multicolinearity

I If a variable X does nothing “on its own” we can’t estimate

its effect on Y .
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Back to Baseball – Let’s try to add AVG on top of OBP

t o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.948136
R Square 0.898961
Adjusted R Square 0.891477
Standard Error 0.160502
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 6.188355 3.094177 120.1119098 3.63577E‐14
Residual 27 0.695541 0.025761
Total 29 6.883896

Coefficients andard Err t Stat P‐value Lower 95% Upper 95%
Intercept ‐7.933633 0.844353 ‐9.396107 5.30996E‐10 ‐9.666102081 ‐6.201163
AVG 7.810397 4.014609 1.945494 0.062195793 ‐0.426899658 16.04769
OBP 31.77892 3.802577 8.357205 5.74232E‐09 23.9766719 39.58116

R/G = β0 + β1AVG + β2OBP + ε

Is AVG any good? 46



Back to Baseball - Now let’s add SLG

t o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.955698
R Square 0.913359
Adjusted R Square 0.906941
Standard Error 0.148627
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 6.28747 3.143735 142.31576 4.56302E‐15
Residual 27 0.596426 0.02209
Total 29 6.883896

Coefficients andard Err t Stat P‐value Lower 95% Upper 95%
Intercept ‐7.014316 0.81991 ‐8.554984 3.60968E‐09 ‐8.69663241 ‐5.332
OBP 27.59287 4.003208 6.892689 2.09112E‐07 19.37896463 35.80677
SLG 6.031124 2.021542 2.983428 0.005983713 1.883262806 10.17899

R/G = β0 + β1OBP + β2SLG + ε

What about now? Is SLG any good 47



Back to Baseball

Correlations
AVG 1

OBP 0.77 1

SLG 0.75 0.83 1

I When AVG is added to the model with OBP, no additional

information is conveyed. AVG does nothing “on its own” to

help predict Runs per Game...

I SLG however, measures something that OBP doesn’t (power!)

and by doing something “on its own” it is relevant to help

predict Runs per Game. (Okay, but not much...)
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F-tests

I In many situation, we need a testing procedure that can

address simultaneous hypotheses about more than one

coefficient

I Why not the t-test?

I We will look at two important types of simultaneous tests

(i) Overall Test of Significance

(ii) Partial F-test

The first test will help us determine whether or not our regression

is worth anything... the second will allow us to compare different

models.
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Supervisor Performance Data

Suppose you are interested in the relationship between the overall

performance of supervisors to specific activities involving

interactions between supervisors and employees (from a psychology

management study)

The Data

I Y = Overall rating of supervisor

I X1 = Handles employee complaints

I X2 = Does not allow special privileges

I X3 = Opportunity to learn new things

I X4 = Raises based on performance

I X5 = Too critical of poor performance

I X6 = Rate of advancing to better jobs 50



Supervisor Performance Data

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

Supervisor Performance Data
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Supervisor Performance Data

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

F-tests

%.$/0"1"$234$1")2/*53.0*6$0"1"7$81"$2))$/0"$95"::*9*"3/.$.*;3*:*923/7$
!02/$2<5=/$/0"$;15=6$5:$>21*2<)".$953.*+"1"+$/5;"/0"17

Is there any relationship here? Are all the coefficients significant?

What about all of them together?
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Why not look at R2

I R2 in MLR is still a measure of goodness of fit.

I However it ALWAYS grows as we increase the number of

explanatory variables.

I Even if there is no relationship between the X ′s and Y ,

R2 > 0!!

I To see this let’s look at some “Garbage” Data
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Garbage Data

I made up 6 “garbage” variables that have nothing to do with Y ...

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

F-tests
./$0""$12*03$)"140$5"6"781"$0/9"$587:85"$+818$1281$280$6/12*65$1/$
+/$;*12$/<"78))$="7>/7986?"$@ABC

D*701$)"140$98#"$E=$0/9"$F587:85"G$@HI3$H,3$J3$HKB$<87*8:)"0C
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Garbage Data

I R2 is 26% !!

I We need to develop a way to see whether a R2 of 26% can

happen by chance when all the true β’s are zero.

I It turns out that if we transform R2 we can solve this.

Define

f =
R2/p

(1− R2)/(n − p − 1)

A big f corresponds to a big R2 but there is a distribution that

tells what kind of f we are likely to get when all the coefficients

are indeed zero... The f statistic provides a scale that allows us to

decide if “big” is “big enough”.
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The F -test

We are testing:

H0 : β1 = β2 = . . . βp = 0

H1 : at least one βj 6= 0.

This is the F-test of overall significance. Under the null hypothesis

f is distributed:

f ∼ Fp,n−p−1

I Generally, f > 4 is very significant (reject the null).
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The F -test
What kind of distribution is this?

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

F dist. with 6 and 23 df

de
ns
ity

It is a right skewed, positive valued family of distributions indexed

by two parameters (the two df values). 57



The F-test

Let’s check this test for the “garbage” data...

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

F-tests

Summary continued…
***' ./0123"$4$

5#6((7
#((8

5#685
#84 ,

,

Two equivalent expressions for f

9"3:;$<="<#$3=*;$3";3$4/>$3="$?@A>BA@"C$DA>*AB)";E

How about the original analysis (survey variables)...
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F-tests
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58



F-test

The p-value for the F -test is

p-value = Pr(Fp,n−p−1 > f )

I We usually reject the null when the p-value is less than 5%.

I Big f → REJECT!

I Small p-value → REJECT!
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The F-test

In Excel, the p-value is reported under “Significance F”

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

F-tests

Summary continued…
***' ./0123"$4$

5#6((7
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5#685
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Two equivalent expressions for f

9"3:;$<="<#$3=*;$3";3$4/>$3="$?@A>BA@"C$DA>*AB)";E
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F-tests
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The F-test

Note that f is also equal to (you can check the math!)

f =
SSR/p

SSE/(n − p − 1)

In Excel, the values under MS are SSR/p and SSE/(n − p − 1)

!""#$%&'$()*+"$,-
Applied Regression Analysis
Carlos M. Carvalho

F-tests

Summary continued…
***' ./0123"$4$

5#6((7
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#84 ,

,

Two equivalent expressions for f

9"3:;$<="<#$3=*;$3";3$4/>$3="$?@A>BA@"C$DA>*AB)";E

f =
191.33

136.91
= 1.39
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Partial F-tests

I What about fitting a reduced model with only a couple of

X ’s? In other words, do we need all of the X ’s to explain Y ?

I For example, in the Supervisor data we could argue that X1

and X3 were the most important variables in predicting Y .

I The full model (6 covariates) has R2
full = 0.733 while the

model with only X1 and X3 has R2
rest = 0.708 (check that!)

I Can we make a decision based only in the R2 calculations?

NO!!
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Partial F -test

With the total F -test, we were asking

“Is this regression worthwhile?”

Now, we’re asking

“Is is useful to add these extra covariates to the regression?”

You always want to use the simplest model possible.

I Only add covariates if they are truly informative.

63



Partial F -test

Consider the regression model

Y = β0 + β1X1 . . .+ βpbase
Xpbase

+ βpbase+1Xpbase+1 . . . βpfull
Xpfull

+ ε

Such that dbase is the number of covariates in the base (small)

model and pfull > pbase is the number in the full (larger) model.

The Partial F -test is concerned with the hypotheses

H0 : βpbase+1 = βpbase+2 = . . . = βpfull
= 0

H1 : at least one βj 6= 0 for j > pbase .
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Partial F -test

It turns out that under the null H0 (i.e. base model is true),

f =
(R2

full − R2
base)/(pfull − pbase)

(1− R2
full)/(n − pfull − 1)

∼ Fpfull−pbase ,n−pfull−1

That is, under the null hypothesis, the ratio of normalized R2
full − R2

base

(increase in R2) and 1− R2
full has F -distribution with pfull − pbase and

n − pfull − 1 df.

I Big f means that R2
full − R2

base is statistically significant.

I Big f means that at least one of the added X ’s is useful.
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Supervisor Performance: Partial F -test

Back to our supervisor data; we want to test

H0 : β2 = β4 = β5 = β6 = 0

H1 : at least one βj 6= 0 for j ∈ {2, 4, 5, 6}.

The F -stat is f =
(0.733− .708)/(6− 2)

(1− .733)/(30− 6− 1)
=

0.00625

0.0116
= 0.54

This leads to a p-value of 0.71 ... What do we conclude?
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Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a

company for salary discrimination... you gather the following

data...

Gender Salary

1 Male 32.0

2 Female 39.1

3 Female 33.2

4 Female 30.6

5 Male 29.0

... ... ...

208 Female 30.0
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Detecting Sex Discrimination

You want to relate salary(Y ) to gender(X )... how can we do that?

Gender is an example of a categorical variable. The variable gender

separates our data into 2 groups or categories. The question we

want to answer is: “how is your salary related to which group you

belong to...”

Could we think about additional examples of categories potentially

associated with salary?

I MBA education vs. not

I legal vs. illegal immigrant

I quarterback vs wide receiver
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Detecting Sex Discrimination

We can use regression to answer these question but we need to

recode the categorical variable into a dummy variable

Gender Salary Sex

1 Male 32.00 1

2 Female 39.10 0

3 Female 33.20 0

4 Female 30.60 0

5 Male 29.00 1

... ... ...

208 Female 30.00 0

Note: In Excel you can create the dummy variable using the

formula:

=IF(Gender=“Male”,1,0) 69



Detecting Sex Discrimination

Now you can present the following model in court:

Salaryi = β0 + β1Sexi + εi

How do you interpret β1?

E [Salary |Sex = 0] = β0

E [Salary |Sex = 1] = β0 + β1

β1 is the male/female difference
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Detecting Sex Discrimination

Salaryi = β0 + β1Sexi + εi

s o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.346541
R Square 0.120091
Adjusted R Square 0.115819
Standard Error 10.58426
Observations 208

ANOVA
df SS MS F Significance F

Regression 1 3149.634 3149.6 28.1151 2.93545E-07
Residual 206 23077.47 112.03
Total 207 26227.11

Coefficient tandard Err t Stat P-value Lower 95% Upper 95%
Intercept 37.20993 0.894533 41.597 3E-102 35.44631451 38.9735426
Gender 8.295513 1.564493 5.3024 2.9E-07 5.211041089 11.3799841

β̂1 = b1 = 8.29... on average, a male makes approximately $8,300

more than a female in this firm.

How should the plaintiff’s lawyer use the confidence interval in his

presentation?
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Detecting Sex Discrimination

How can the defense attorney try to counteract the plaintiff’s

argument?

Perhaps, the observed difference in salaries is related to other

variables in the background and NOT to policy discrimination...

Obviously, there are many other factors which we can legitimately

use in determining salaries:

I education

I job productivity

I experience

How can we use regression to incorporate additional information?
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Detecting Sex Discrimination

Let’s add a measure of experience...

Salaryi = β0 + β1Sexi + β2Expi + εi

What does that mean?

E [Salary |Sex = 0,Exp] = β0 + β2Exp

E [Salary |Sex = 1,Exp] = (β0 + β1) + β2Exp
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Detecting Sex Discrimination

The data gives us the “year hired” as a measure of experience...

YrHired Gender Salary Sex

1 92 Male 32.00 1

2 81 Female 39.10 0

3 83 Female 33.20 0

4 87 Female 30.60 0

5 92 Male 29.00 1

... ... ...

208 62 Female 30.00 0

74



Detecting Sex Discrimination

Salaryi = β0 + β1Sexi + β2Exp + εi

n

o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.700680156
R Square 0.490952681
Adjusted R 0.485986366
Standard E 8.070070757
Observatio 208

ANOVA
df SS MS F Significance F

Regression 2 12876.27 6438 98.8565 8.7642E-31
Residual 205 13350.84 65.13
Total 207 26227.11

Coefficients tandard Err t Stat P-value Lower 95% Upper 95%
Intercept 121.0212441 6.891851 17.56 9.8E-43 107.433246 134.6092
Gender 8.011885777 1.193089 6.715 1.8E-10 5.65958805 10.36418
YrHired -0.981150947 0.080285 -12.22 3.7E-26 -1.1394402 -0.822862

Salaryi = 121 + 8Sexi − 0.98Expi + εi

Is this good or bad news for the defense? 75



Detecting Sex Discrimination

Salaryi =

{
121− 0.98Expi + εi females

129− 0.98Expi + εi males

60 70 80 90

30
40

50
60

70
80

90

Year Hired

S
al
ar
y
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More than Two Categories

We can use dummy variables in situations in which there are more

than two categories. Dummy variables are needed for each

category except one, designated as the “base” category.

Why? Remember that the numerical value of each category has no

quantitative meaning!
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Example: House Prices

We want to evaluate the difference in house prices in a couple of

different neighborhoods.

Nbhd SqFt Price

1 2 1.79 114.3

2 2 2.03 114.2

3 2 1.74 114.8

4 2 1.98 94.7

5 2 2.13 119.8

6 1 1.78 114.6

7 3 1.83 151.6

8 3 2.16 150.7

... ... ... ...
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Example: House Prices

Let’s create the dummy variables dn1, dn2 and dn3...

Nbhd SqFt Price dn1 dn2 dn3

1 2 1.79 114.3 0 1 0

2 2 2.03 114.2 0 1 0

3 2 1.74 114.8 0 1 0

4 2 1.98 94.7 0 1 0

5 2 2.13 119.8 0 1 0

6 1 1.78 114.6 1 0 0

7 3 1.83 151.6 0 0 1

8 3 2.16 150.7 0 0 1

... ... ...
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Example: House Prices

Pricei = β0 + β1dn1i + β2dn2i + β3Sizei + εi

E [Price|dn1 = 1, Size] = β0 + β1 + β3Size (Nbhd 1)

E [Price|dn2 = 1, Size] = β0 + β2 + β3Size (Nbhd 2)

E [Price|dn1 = 0, dn2 = 0, Size] = β0 + β3Size (Nbhd 3)
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Example: House Prices

Pricei = β0 + β1dn1 + β2dn2 + β3Size + εi
SUMMARY  OUTPUT

Regression  Statistics
Multiple  R 0.828
R  Square 0.685
Adjusted  R  Square 0.677
Standard  Error 15.260
Observations 128

ANOVA
df SS MS F Significance  F

Regression 3 62809.1504 20936 89.9053 5.8E-31
Residual 124 28876.0639 232.87
Total 127 91685.2143

Coefficients Standard  Error t  Stat P-value Lower  95%Upper  95%
Intercept 62.78 14.25 4.41 0.00 34.58 90.98
dn1 -41.54 3.53 -11.75 0.00 -48.53 -34.54
dn2 -30.97 3.37 -9.19 0.00 -37.63 -24.30
size 46.39 6.75 6.88 0.00 33.03 59.74

Pricei = 62.78− 41.54dn1− 30.97dn2 + 46.39Size + εi
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Example: House Prices
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Example: House Prices

Pricei = β0 + β1Size + εi
SUMMARY  OUTPUT

Regression  Statistics
Multiple  R 0.553
R  Square 0.306
Adjusted  R  Square 0.300
Standard  Error 22.476
Observations 128

ANOVA
df SS MS F Significance  F

Regression 1 28036.4 28036.36 55.501 1E-11
Residual 126 63648.9 505.1496
Total 127 91685.2

CoefficientsStandard  Error t  Stat P-valueLower  95%Upper  95%
Intercept -10.09 18.97 -0.53 0.60 -47.62 27.44
size 70.23 9.43 7.45 0.00 51.57 88.88

Pricei = −10.09 + 70.23Size + εi
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Example: House Prices
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Back to the Sex Discrimination Case
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Does it look like the effect of experience on salary is the same for

males and females? 85



Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope

for each group?

Yes... Consider the following model:

Salaryi = β0 + β1Expi + β2Sexi + β3Expi × Sexi + εi

For Females:

Salaryi = β0 + β1Expi + εi

For Males:

Salaryi = (β0 + β2) + (β1 + β3)Expi + εi
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Sex Discrimination Case

How does the data look like?

YrHired Gender Salary Sex SexExp

1 92 Male 32.00 1 92

2 81 Female 39.10 0 0

3 83 Female 33.20 0 0

4 87 Female 30.60 0 0

5 92 Male 29.00 1 92

... ... ...

208 62 Female 30.00 0 62
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Sex Discrimination Case

Salaryi = β0 + β1Sexi + β2Exp + β3Exp ∗ Sex + εi

S
r
s

S

o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.799130351
R Square 0.638609318
Adjusted R 0.63329475
Standard Er 6.816298288
Observation 208

ANOVA
df SS MS F ignificance F

Regression 3 16748.88 5582.96 120.16 7.513E-45
Residual 204 9478.232 46.4619
Total 207 26227.11

Coefficients tandard Err t Stat P-value Lower 95% Upper 95%
Intercept 61.12479795 8.770854 6.96908 4E-11 43.831649 78.41795
Gender 114.4425931 11.7012 9.78041 9E-19 91.371794 137.5134
YrHired -0.279963351 0.102456 -2.7325 0.0068 -0.4819713 -0.077955
GenderExp -1.247798369 0.136676 -9.1296 7E-17 -1.5172765 -0.97832

Salaryi = 61 + 114Sexi +−0.27Exp +−1.24Exp ∗ Sex + εi
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Sex Discrimination Case
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Is this good or bad news for the plaintiff? 89



Variable Interaction

So, the effect of experience on salary is different for males and

females... in general, when the effect of the variable X1 onto Y

depends on another variable X2 we say that X1 and X2 interact

with each other.

We can extend this notion by the inclusion of multiplicative effects

through interaction terms.

Yi = β0 + β1X1i + β2X2i + β3(X1iX2i) + ε

∂E[Y |X1,X2]

∂X1
= β1 + β3X2

We will pick this up in our next section...
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