Division of Statistics + Scientific Computation

THE UNIVERSITY OF TEXAS AT AUSTIN

Advanced Regression Summer Statistics Institute

Day 2: MLR and Dummy Variables

The Multiple Regression Model

Many problems involve more than one independent variable or factor which affects the dependent or response variable.

- More than size to predict house price!
- Demand for a product given prices of competing brands, advertising,house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple Linear Regression (MLR) model extends this idea to include more than one independent variable.

The MLR Model

Same as always, but with more covariates.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Recall the key assumptions of our linear regression model:

- (i) The conditional mean of Y is linear in the X_j variables.
- (ii) The error term (deviations from line)
 - are normally distributed
 - independent from each other
 - identically distributed (i.e., they have constant variance)

 $Y|X_1\ldots X_p \sim \mathcal{N}(\beta_0 + \beta_1 X_1\ldots + \beta_p X_p, \sigma^2)$

Our interpretation of regression coefficients can be extended from the simple single covariate regression case:

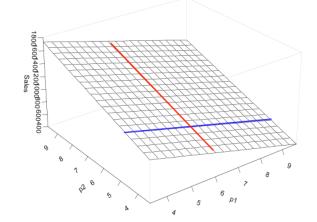
$$\beta_j = \frac{\partial E[Y|X_1, \dots, X_p]}{\partial X_j}$$

Holding all other variables constant, β_j is the average change in Y per unit change in X_j .

The MLR Model If p = 2, we can plot the regression surface in 3D. Consider sales of a product as predicted by price of this product

(P1) and the price of a competing product (P2).

 $Sales = \beta_0 + \beta_1 P 1 + \beta_2 P 2 + \epsilon$



5

$$Y = \beta_0 + \beta_1 X_1 \dots + \beta_p X_p + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

How do we estimate the MLR model parameters?

The principle of Least Squares is exactly the same as before:

- Define the fitted values
- Find the best fitting plane by minimizing the sum of squared residuals.

The data...

p2	Sales
5.2041860	144.48788
8.0597324	637.24524
11.6759787	620.78693
8.3644209	549.00714
2.1502922	20.42542
10.1530371	713.00665
4.9465690	346.70679
7.7605691	595.77625
7.4288974	457.64694
10.7113247	591.45483
	5.2041860 8.0597324 11.6759787 8.3644209 2.1502922 10.1530371 4.9465690 7.7605691 7.4288974

Model: Sales_i =
$$\beta_0 + \beta_1 P 1_i + \beta_2 P 2_i + \epsilon_i$$
, $\epsilon \sim N(0, \sigma^2)$

Regression Statisti	cs
Multiple R	0.99
R Square	0.99
Adjusted R Square	0.99
Standard Error	28.42
Observations	100.00

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	6004047.24	3002023.62	3717.29	0.00
Residual	97.00	78335.60	807.58		
Total	99.00	6082382.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	115.72	8.55	13.54	0.00	98.75	132.68
p1	-97.66	2.67	-36.60	0.00	-102.95	-92.36
p2	108.80	1.41	77.20	0.00	106.00	111.60

$$b_0 = \hat{eta}_0 = 115.72, \ b_1 = \hat{eta}_1 = -97.66, \ b_2 = \hat{eta}_2 = 108.80,$$

 $s = \hat{\sigma} = 28.42$

Plug-in Prediction in MLR

Suppose that by using advanced corporate espionage tactics, I discover that my competitor will charge \$10 the next quarter. After some marketing analysis I decided to charge \$8. How much will I sell?

Our model is

$$Sales = \beta_0 + \beta_1 P 1 + \beta_2 P 2 + \epsilon$$

with $\epsilon \sim N(0, \sigma^2)$ Our estimates are $b_0 = 115$, $b_1 = -97$, $b_2 = 109$ and s = 28which leads to

$$Sales = 115 + -97 * P1 + 109 * P2 + \epsilon$$

with $\epsilon \sim N(0, 28^2)$

Plug-in Prediction in MLR

By plugging-in the numbers,

Sales =
$$115 + -97 * 8 + 109 * 10 + \epsilon$$

= $437 + \epsilon$

$$Sales|P1 = 8, P2 = 10 \sim N(437, 28^2)$$

and the 95% Prediction Interval is $(437 \pm 2 * 28)$

381 < *Sales* < 493

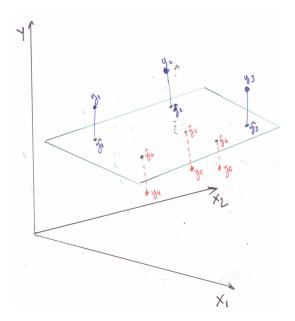
Just as before, each b_i is our estimate of β_i

Fitted Values: $\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} \dots + b_p X_p$.

Residuals: $e_i = Y_i - \hat{Y}_i$.

Least Squares: Find $b_0, b_1, b_2, \ldots, b_p$ to minimize $\sum_{i=1}^n e_i^2$.

In MLR the formulas for the b_i 's are too complicated so we won't talk about them...



ł	o1	p2	Sales	yhat	residuals	b0	b1	b2	
Г	5.13567	5.204186	144.4879	184.0963	-39.60838		115	-97	109
I	3.49546	8.059732	637.2452	654.4512	-17.20597				
I	7.275341	11.67598	620.7869	681.9736	-61.18671				
Г	4.662816	8.364421	549.0071	574.4288	-25.42163				
Г	3.584537	2.150292	20.42542	1.681753	18.74367				
I	5.167917	10.15304	713.0067	720.3931	-7.386461				
I	3.384091	4.946569	346.7068	325.9192	20.78763				
I	4.293064	7.760569	595.7762	544.4749	51.30139				
1	4.369094	7.428897	457.6469	500.9477	-43.30072				
	7.2266	10.71132	591.4548	581.5542	9.900659				

Excel break: fitted values, residuals,...

Residual Standard Error

The calculation for s^2 is exactly the same:

$$s^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-p-1} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-p-1}$$

•
$$\hat{Y}_i = b_0 + b_1 X_{1i} + \dots + b_p X_{pi}$$

The residual "standard error" is the estimate for the standard deviation of ε,i.e,

$$\hat{\sigma} = \mathbf{s} = \sqrt{\mathbf{s}^2}.$$

Residuals in MLR

As in the SLR model, the residuals in multiple regression are purged of any linear relationship to the independent variables. Once again, they are on average zero.

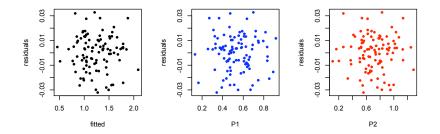
Because the fitted values are an exact linear combination of the X's they are not correlated to the residuals.

We decompose Y into the part predicted by X and the part due to idiosyncratic error.

 $Y = \hat{Y} + e$ $\bar{e} = 0; \quad \operatorname{corr}(X_j, e) = 0; \quad \operatorname{corr}(\hat{Y}, e) = 0$

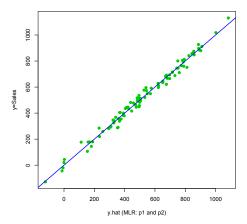
Residuals in MLR

Consider the residuals from the Sales data:



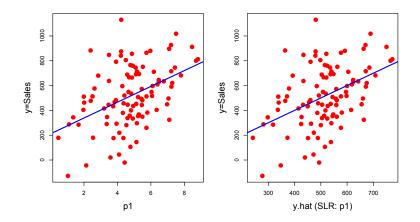
Fitted Values in MLR Another great plot for MLR problems is to look at

Y (true values) against \hat{Y} (fitted values).



If things are working, these values should form a nice straight line. Can you guess the slope of the blue line? 17

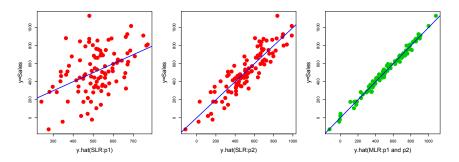
Fitted Values in MLR With just P1...



- Left plot: Sales vs P1
- Right plot: Sales vs. \hat{y} (only P1 as a regressor)

Fitted Values in MLR

Now, with P1 and P2...



- ▶ First plot: *Sales* regressed on *P*1 alone...
- Second plot: Sales regressed on P2 alone...
- ▶ Third plot: Sales regressed on *P*1 and *P*2

R-squared

We still have our old variance decomposition identity...

$$SST = SSR + SSE$$

• ... and R^2 is once again defined as

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

telling us the percentage of variation in Y explained by the X's.

In Excel, R² is in the same place and "Multiple R" refers to the correlation between Ŷ and Y.

$$Sales_i = \beta_0 + \beta_1 P 1_i + \beta_2 P 2_i + \epsilon_i$$

Regression Statist	ics
Multiple R	0.99
R Square	0.99
Adjusted R Square	0.99
Standard Error	28.42
Observations	100.00

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	6004047.24	3002023.62	3717.29	0.00
Residual	97.00	78335.60	807.58		
Total	99.00	6082382.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	115.72	8.55	13.54	0.00	98.75	132.68
p1	-97.66	2.67	-36.60	0.00	-102.95	-92.36
p2	108.80	1.41	77.20	0.00	106.00	111.60

 $R^2 = 0.99$

Multiple R = $r_{Y,\hat{Y}} = \operatorname{corr}(Y,\hat{Y}) = 0.99$ Note that $R^2 = \operatorname{corr}(Y,\hat{Y})^2$

Back to Baseball

$R/G = \beta_0 + \beta_1 OBP + \beta_2 SLG + \epsilon$

Regression Statistics					
Multiple R	0.955698				
R Square	0.913359				
Adjusted R Square	0.906941				
Standard Error	0.148627				
Observations	30				

ANOVA

	df	SS	MS	F	Significance F
Regression	2	6.28747	3.143735	142.31576	5 4.56302E-15
Residual	27	0.596426	0.02209		
Total	29	6.883896			

	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.014316	0.81991	-8.554984	3.60968E-09	-8.69663241	-5.332
OBP	27.59287	4.003208	6.892689	2.09112E-07	19.37896463	35.80677
SLG	6.031124	2.021542	2.983428	0.005983713	1.883262806	10.17899

 $R^2 = 0.913$

Multiple R = $r_{Y,\hat{Y}} = \operatorname{corr}(Y,\hat{Y}) = 0.955$ Note that $R^2 = \operatorname{corr}(Y,\hat{Y})^2$

Intervals for Individual Coefficients

As in SLR, the sampling distribution tells us how close we can expect b_j to be from β_j

The LS estimators are unbiased: $E[b_j] = \beta_j$ for j = 0, ..., d.

We denote the sampling distribution of each estimator as

 $b_j \sim N(\beta_j, s_{b_j}^2)$

Intervals for Individual Coefficients

Intervals and *t*-statistics are exactly the same as in SLR.

- A 95% C.I. for β_j is approximately $b_j \pm 2s_{b_i}$
- The t-stat: $t_j = \frac{(b_j \beta_j^0)}{s_{b_j}}$ is the number of standard errors between the LS estimate and the null value (β_i^0)
- As before, we reject the null when t-stat is greater than 2 in absolute value
- Also as before, a small p-value leads to a rejection of the null
- ▶ Rejecting when the p-value is less than 0.05 is equivalent to rejecting when the |t_j| > 2

IMPORTANT: Intervals and testing via $b_j \& s_{b_j}$ are one-at-a-time procedures:

You are evaluating the jth coefficient conditional on the other X's being in the model, but regardless of the values you've estimated for the other b's.

In Excel... Do we know all of these numbers?

Regression Statistics	
Multiple R	0.99
R Square	0.99
Adjusted R Square	0.99
Standard Error	28.42
Observations	100.00

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	6004047.24	3002023.62	3717.29	0.00
Residual	97.00	78335.60	807.58		
Total	99.00	6082382.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	115.72	8.55	13.54	0.00	98.75	132.68
p1	-97.66	2.67	-36.60	0.00	-102.95	-92.36
p2	108.80	1.41	77.20	0.00	106.00	111.60

95% C.I. for $\beta_1 \approx b1 \pm 2 \times s_{b_1}$

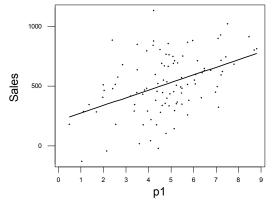
 $[-97.66 - 2 \times 2.67; -97.66 + 2 \times 2.67] = [-102.95; -92.36]$

- There are two, very important things we need to understand about the MLR model:
 - 1. How dependencies between the X's affect our interpretation of a multiple regression;
 - How dependencies between the X's inflate standard errors (aka multicolinearity)
- We will look at a few examples to illustrate the ideas...

The Sales Data:

- Sales : units sold in excess of a baseline
- ▶ *P1*: our price in \$ (in excess of a baseline price)
- ▶ *P2*: competitors price (again, over a baseline)

If we regress Sales on our own price, we obtain a somewhat surprising conclusion... the higher the price the more we sell!!



It looks like we should just raise our prices, right? NO, not if you have taken this statistics class!

The regression equation for Sales on own price (P1) is:

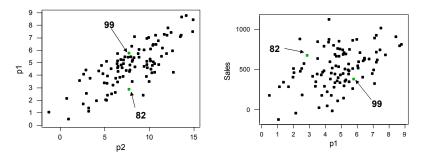
Sales = 211 + 63.7P1

If now we add the competitors price to the regression we get

Sales = 116 - 97.7P1 + 109P2

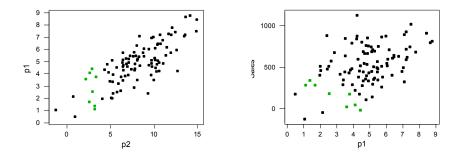
- Does this look better? How did it happen?
- Remember: -97.7 is the affect on sales of a change in P1 with P2 held fixed!!

- How can we see what is going on? Let's compare Sales in two different observations: weeks 82 and 99.
- We see that an increase in P1, holding P2 constant, corresponds to a drop in Sales!



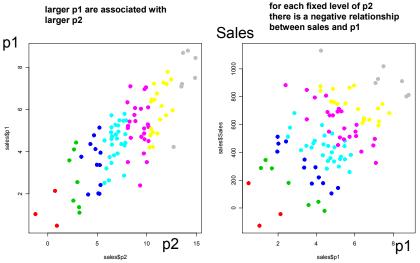
Note the strong relationship (dependence) between P1 and P2!!

Let's look at a subset of points where P1 varies and P2 is held approximately constant...



For a fixed level of P2, variation in P1 is negatively correlated with Sales!!

▶ Below, different colors indicate different ranges for P2...

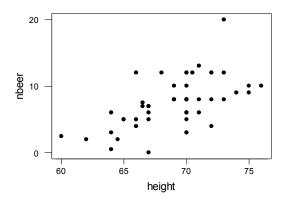


Summary:

- 1. A larger P1 is associated with larger P2 and the overall effect leads to bigger sales
- 2. With P2 held fixed, a larger P1 leads to lower sales
- 3. MLR does the trick and unveils the "correct" economic relationship between Sales and prices!

Beer Data (from an MBA class)

- nbeer number of beers before getting drunk
- height and weight



Is number of beers related to height?

$$nbeers = \beta_0 + \beta_1 height + \epsilon$$

Regression Statistics	5
Multiple R	0.58
R Square	0.34
Adjusted R Square	0.33
Standard Error	3.11
Observations	50.00

ANOVA

	df	SS	MS	F	Significance F	
Regression	1.00	237.77	237.77	24.60	0.00	
Residual	48.00	463.86	9.66			
Total	49.00	701.63				
	Orafficients	Ota is do not Firms in	4 04-4	Duratura	1 0.50/	11
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-36.92	8.96	-4.12	0.00	-54.93	-18.91
height	0.64	0.13	4.96	0.00	0.38	0.90

Yes! Beers and height are related...

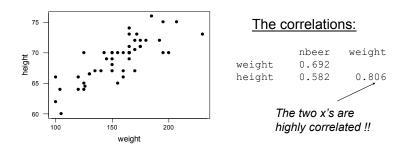
$$nbeers = \beta_0 + \beta_1 weight + \beta_2 height + \epsilon$$

Regression Statisti	cs
Multiple R	0.69
R Square	0.48
Adjusted R Square	0.46
Standard Error	2.78
Observations	50.00

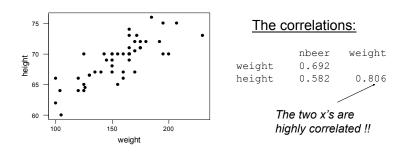
ANOVA

	df	SS	MS	F	Significance F	
Regression	2.00	337.24	168.62	21.75	0.00	
Residual	47.00	364.38	7.75			
Total	49.00	701.63				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-11.19	10.77	-1.04	0.30	-32.85	10.48
weight	0.09	0.02	3.58	0.00	0.04	0.13
height	0.08	0.20	0.40	0.69	-0.32	0.47

What about now?? Height is not necessarily a factor...



- If we regress "beers" only on height we see an effect. Bigger heights go with more beers.
- However, when height goes up weight tends to go up as well... in the first regression, height was a proxy for the real *cause* of drinking ability. Bigger people can drink more and weight is a more accurate measure of "bigness".



In the multiple regression, when we consider only the variation in height that is not associated with variation in weight, we see no relationship between height and beers.

 $nbeers = \beta_0 + \beta_1 weight + \epsilon$

Regression Statistics				
Multiple R	0.69			
R Square	0.48			
Adjusted R	0.47			
Standard E	2.76			
Observatio	50			

ANOVA

	df	SS	MS	F	Significance F	-
Regressio	or 1	336.0317807	336.0318	44.11878	2.60227E-08	-
Residual	48	365.5932193	7.616525			
Total	49	701.625				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95
Intercept	-7.021	2.213	-3.172	0.003	-11.471	-2.57
weight	0.093	0.014	6.642	0.000	0.065	0.12

Why is this a better model than the one with weight and height??

In general, when we see a relationship between y and x (or x's), that relationship may be driven by variables "lurking" in the background which are related to your current x's.

This makes it hard to reliably find "causal" relationships. Any correlation (association) you find could be caused by other variables in the background... correlation is NOT causation

Any time a report says two variables are related and there's a suggestion of a "causal" relationship, ask yourself whether or not other variables might be the real reason for the effect. Multiple regression allows us to control for all important variables by including them into the regression. "Once we control for weight, height and beers are NOT related"!!

- With the above examples we saw how the relationship amongst the X's can affect our interpretation of a multiple regression... we will now look at how these dependencies will inflate the standard errors for the regression coefficients, and hence our uncertainty about them.
- Remember that in simple linear regression our uncertainty about b₁ is measured by

$$s_{b_1}^2 = rac{s^2}{(n-1)s_x^2} = rac{s^2}{\sum_{i=1}^n{(X_i - \bar{X})^2}}$$

The more variation in X (the larger s²_x) the more "we know" about β₁... ie, (b₁ − β₁) is smaller.

- In Multiple Regression we seek to relate the variation in Y to the variation in an X holding the other X's fixed. So, we need to see how much each X varies on its own.
- in MLR, the standard errors are defined by the following formula:

$$s_{b_j}^2 = rac{s^2}{ ext{variation in } X_j ext{ not associated with other } X' ext{s}}$$

How do we measure the bottom part of the equation? We regress X_j on all the other X's and compute the residual sum of squares (call it SSE_i) so that

$$s_{b_j}^2 = rac{s^2}{SSE_j}$$

In the "number of beers example" ... s = 2.78 and the regression on height on weight gives...

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.806				
R Square	0.649				
Adjusted R Squar	0.642				
Standard Error	2.051				
Observations	50.000				

ANOVA

	SS	MS	<i>_</i>	Significance F
1.000	373.148	373.148	88.734	0.000
48.000	201.852	4.205		
49.000	575.000			
	48.000	48.000 201.852	48.000 201.852 4.205	48.000 201.852 4.205

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	53.751	1.645	32.684	0.000	50.444	57.058
weight	0.098	0.010	9.420	0.000	0.077	0.119

 $SSE_2 = 201.85$

$$s_{b_2} = \sqrt{\frac{2.78^2}{201.85}} = 0.20$$
 Is this right?

44

- What happens if we are regressing Y on X's that are highly correlated. SSE_j goes down and the standard error s_{bj} goes up!
- What is the effect on the confidence intervals (b_j ± 2 × s_{b_j})? They get wider!
- This situation is called Multicolinearity
- If a variable X does nothing "on its own" we can't estimate its effect on Y.

Back to Baseball – Let's try to add AVG on top of OBP

Regression Statistics					
Multiple R	0.948136				
R Square	0.898961				
Adjusted R Square	0.891477				
Standard Error	0.160502				
Observations	30				

ANOVA

	df	SS	MS	F	Significance F	•
Regression	2	6.188355	3.094177	120.1119098	3.63577E-14	
Residual	27	0.695541	0.025761			
Total	29	6.883896				
	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.933633	0.844353	-9.396107	5.30996E-10	-9.666102081	-6.201163
AVG	7.810397	4.014609	1.945494	0.062195793	-0.426899658	16.04769
OBP	31.77892	3.802577	8.357205	5.74232E-09	23.9766719	39.58116

$$R/G = \beta_0 + \beta_1 AVG + \beta_2 OBP + \epsilon$$

Is AVG any good?

Back to Baseball - Now let's add SLG

Regression Statistics					
Multiple R	0.955698				
R Square	0.913359				
Adjusted R Square	0.906941				
Standard Error	0.148627				
Observations	30				

ANOVA

	df	SS	MS	F	Significance F	-
Regression	2	6.28747	3.143735	142.31576	4.56302E-15	
Residual	27	0.596426	0.02209			
Total	29	6.883896				
	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.014316	0.81991	-8.554984	3.60968E-09	-8.69663241	-5.332
OBP	27.59287	4.003208	6.892689	2.09112E-07	19.37896463	35.80677
SLG	6.031124	2.021542	2.983428	0.005983713	1.883262806	10.17899

$$R/G = \beta_0 + \beta_1 OBP + \beta_2 SLG + \epsilon$$

What about now? Is SLG any good

Back to Baseball

Correlations						
AVG	1					
OBP	0.77	1				
SLG	0.75	0.83	1			

- When AVG is added to the model with OBP, no additional information is conveyed. AVG does nothing "on its own" to help predict Runs per Game...
- SLG however, measures something that OBP doesn't (power!) and by doing something "on its own" it is relevant to help predict Runs per Game. (Okay, but not much...)

F-tests

- In many situation, we need a testing procedure that can address *simultaneous* hypotheses about more than one coefficient
- Why not the t-test?
- We will look at two important types of simultaneous tests
 (i) Overall Test of Significance
 (ii) Partial F-test

The first test will help us determine whether or not our regression is worth anything... the second will allow us to compare different models.

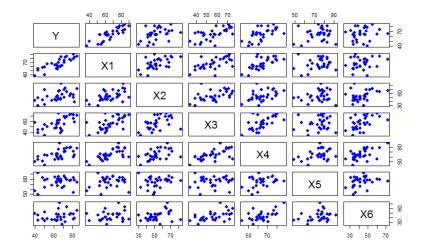
Supervisor Performance Data

Suppose you are interested in the relationship between the overall performance of supervisors to specific activities involving interactions between supervisors and employees (from a psychology management study)

The Data

- Y = Overall rating of supervisor
- X_1 = Handles employee complaints
- X₂ = Does not allow special privileges
- $X_3 = \text{Opportunity to learn new things}$
- X_4 = Raises based on performance
- $X_5 =$ Too critical of poor performance
- X_6 = Rate of advancing to better jobs

Supervisor Performance Data



51

Supervisor Performance Data

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.855921721						
R Square	0.732601993						
Adjusted R Square	0.662845991						
Standard Error	7.067993765						
Observations	30						

ANOVA

	df	SS	MS	F	Significance F
Regression	6	3147.966342	524.6611	10.50235	1.24041E-05
Residual	23	1149.000325	49.95654		
Total	29	4296.966667			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	10.78707639	11.58925724	0.930782	0.361634	-13.18712868	34.76128	-21.747859	43.32201173
X1	0.613187608	0.160983115	3.809018	0.000903	0.280168664	0.946207	0.161254	1.06512125
X2	-0.073050143	0.13572469	-0.538223	0.595594	-0.353818055	0.207718	-0.4540749	0.307974622
X3	0.320332116	0.168520319	1.900852	0.069925	-0.028278721	0.668943	-0.152761	0.793425219
X4	0.081732134	0.221477677	0.369031	0.71548	-0.376429347	0.539894	-0.5400301	0.703494319
X5	0.038381447	0.146995442	0.261106	0.796334	-0.265701791	0.342465	-0.3742841	0.451046997
X6	-0.217056682	0.178209471	-1.217986	0.235577	-0.585711058	0.151598	-0.7173505	0.283237125

Is there any relationship here? Are all the coefficients significant? What about all of them together?

- R^2 in MLR is still a measure of goodness of fit.
- However it ALWAYS grows as we increase the number of explanatory variables.
- Even if there is no relationship between the X's and Y, R² > 0!!
- To see this let's look at some "Garbage" Data

Garbage Data

I made up 6 "garbage" variables that have nothing to do with Y...

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.516876852						
R Square	0.26716168						
Adjusted R Square	0.075986466						
Standard Error	11.70095097						
Observations	30						

ANOVA

	df		SS	MS	F	Significance F
Regression		6	1147.985	191.3308	1.39747	0.257927747
Residual	:	23	3148.982	136.9123		
Total	:	29	4296.967			

	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95% Lower 9	9.0% Upper 99.0%
Intercept	94.8053024	38.6485	2.453014	0.022169	14.85478564	174.7558 -13.694	0154 203.3046202
G1	0.241049359	0.369932	0.651605	0.521115	-0.524213203	1.006312 -0.7974	7383 1.279572553
G2	-0.739495869	0.341006	-2.168569	0.040705	-1.444921431	-0.03407 -1.6968	81541 0.217823675
G3	-0.564272368	0.463453	-1.217539	0.235744	-1.522998304	0.394454 -1.8653	4101 0.736796272
G4	0.156297568	0.291278	0.536592	0.596702	-0.446257444	0.758853 -0.6614	1832 0.974013455
G5	-0.267328742	0.266723	-1.002269	0.326642	-0.819088173	0.284431 -1.0161	1092 0.481453434
G6	0.441170035	0.329715	1.338034	0.193965	-0.240897504	1.123238 -0.4844	5078 1.366790852

Garbage Data

▶ *R*² is 26% !!

- We need to develop a way to see whether a R² of 26% can happen by chance when all the true β's are zero.
- ▶ It turns out that if we transform R² we can solve this.

Define

$$f = \frac{R^2/p}{(1-R^2)/(n-p-1)}$$

A big f corresponds to a big R^2 but there is a distribution that tells what kind of f we are likely to get when all the coefficients are indeed zero... The f statistic provides a scale that allows us to decide if "big" is "big enough".

The *F*-test

We are testing:

$$H_0:\beta_1=\beta_2=\ldots\beta_p=0$$

 H_1 : at least one $\beta_j \neq 0$.

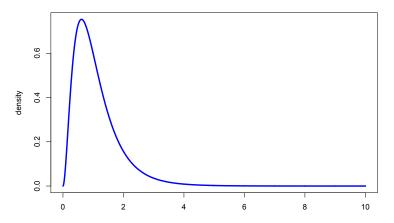
This is the F-test of overall significance. Under the null hypothesis *f* is distributed:

$$f \sim F_{p,n-p-1}$$

• Generally, f > 4 is very significant (reject the null).

The *F*-test What kind of distribution is this?

F dist. with 6 and 23 df



It is a right skewed, positive valued family of distributions indexed by two parameters (the two df values). 57

The F-test

Let's check this test for the "garbage" data...

ANUVA					\sim	
	df		SS	MS	F	Significance F
Regression		6	1147.985	191.3308	1.39747	0.257927747
Residual		23	3148.982	136.9123	\smile	
Total		29	4296.967			

How about the original analysis (survey variables)...

ANOVA					\sim	
	df		SS	MS	F	Significance F
Regression		6	3147.966342	524.6611	10.50235	1.24041E-05
Residual		23	1149.000325	49.95654	\smile	
Total		29	4296.966667			

The *p*-value for the *F*-test is

$$p$$
-value = $Pr(F_{p,n-p-1} > f)$

- We usually reject the null when the p-value is less than 5%.
- Big $f \rightarrow \mathsf{REJECT}!$
- Small p-value \rightarrow **REJECT**!

The F-test

In Excel, the p-value is reported under "Significance F" ANOVA

	df	SS	MS	F	Significance F
Regression		6 1147.985	191.3308	1.39747	0.257927747
Residual	2	23 3148.982	136.9123	\smile	
Total	2	29 4296.967			

ANOVA

	df	SS	MS	F	Significance F
Regression	6	3147.966342	524.6611	10.50235	1.24041E-05
Residual	23	1149.000325	49.95654	\smile	
Total	29	4296.966667			

The F-test

Note that f is also equal to (you can check the math!)

$$f = \frac{SSR/p}{SSE/(n-p-1)}$$

In Excel, the values under MS are SSR/p and SSE/(n-p-1)

ANOVA					\frown	
	df		SS	MS	F	Significance F
Regression		6	1147.985	191.3308	1.39747	0.257927747
Residual	2	23	3148.982	136.9123	\smile	
Total	2	29	4296.967			

$$f = \frac{191.33}{136.91} = 1.39$$

Partial F-tests

- What about fitting a reduced model with only a couple of X's? In other words, do we need all of the X's to explain Y?
- For example, in the Supervisor data we could argue that X₁ and X₃ were the most important variables in predicting Y.
- ► The full model (6 covariates) has R²_{full} = 0.733 while the model with only X₁ and X₃ has R²_{rest} = 0.708 (check that!)
- Can we make a decision based only in the R² calculations? NO!!

With the total *F*-test, we were asking "Is this regression worthwhile?"

Now, we're asking

"Is is useful to add these extra covariates to the regression?"

You **always** want to use the simplest model possible.

Only add covariates if they are truly informative.

Partial F-test

Consider the regression model

 $Y = \beta_0 + \beta_1 X_1 \ldots + \beta_{p_{\textit{base}}} X_{p_{\textit{base}}} + \beta_{p_{\textit{base}}+1} X_{p_{\textit{base}}+1} \ldots \beta_{p_{\textit{full}}} X_{p_{\textit{full}}} + \varepsilon$

Such that d_{base} is the number of covariates in the base (small) model and $p_{full} > p_{base}$ is the number in the full (larger) model.

The Partial F-test is concerned with the hypotheses

$$H_0: \beta_{p_{base}+1} = \beta_{p_{base}+2} = \ldots = \beta_{p_{full}} = 0$$

 H_1 : at least one $\beta_j \neq 0$ for $j > p_{base}$.

Partial F-test

It turns out that under the null H_0 (i.e. base model is true),

$$f = \frac{(R_{full}^2 - R_{base}^2)/(p_{full} - p_{base})}{(1 - R_{full}^2)/(n - p_{full} - 1)} \\ \sim F_{p_{full} - p_{base}, n - p_{full} - 1}$$

That is, under the null hypothesis, the ratio of normalized $R_{full}^2 - R_{base}^2$ (increase in R^2) and $1 - R_{full}^2$ has *F*-distribution with $p_{full} - p_{base}$ and $n - p_{full} - 1$ df.

- ▶ Big f means that $R_{full}^2 R_{base}^2$ is statistically significant.
- Big f means that at least one of the added X's is useful.

Supervisor Performance: Partial F-test

Back to our supervisor data; we want to test

$$egin{aligned} & H_0: eta_2 = eta_4 = eta_5 = eta_6 = 0 \ & H_1: ext{at least one } eta_j
eq 0 ext{ for } j \in \{2,4,5,6\}. \end{aligned}$$

The F-stat is
$$f = \frac{(0.733 - .708)/(6 - 2)}{(1 - .733)/(30 - 6 - 1)} = \frac{0.00625}{0.0116} = 0.54$$

This leads to a *p*-value of 0.71 ... What do we conclude?

Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a company for salary discrimination... you gather the following data...

Ge	ender	Salary
1	Male	32.0
2	Female	39.1
3	Female	33.2
4	Female	30.6
5	Male	29.0
••		•
208	8 Female	30.0

You want to relate salary(Y) to gender(X)... how can we do that?

Gender is an example of a categorical variable. The variable gender separates our data into 2 groups or categories. The question we want to answer is: *"how is your salary related to which group you belong to..."*

Could we think about additional examples of categories potentially associated with salary?

- MBA education vs. not
- legal vs. illegal immigrant
- quarterback vs wide receiver

We can use regression to answer these question but we need to recode the categorical variable into a dummy variable

Gender		Salary	Sex
1	Male	32.00	1
2	Female	39.10	0
3	Female	33.20	0
4	Female	30.60	0
5	Male	29.00	1
•••			
208	Female	30.00	0

Note: In Excel you can create the dummy variable using the formula:

Now you can present the following model in court:

$$Salary_i = \beta_0 + \beta_1 Sex_i + \epsilon_i$$

How do you interpret β_1 ?

$$E[Salary|Sex = 0] = \beta_0$$
$$E[Salary|Sex = 1] = \beta_0 + \beta_1$$

 β_1 is the male/female difference

$$Salary_i = \beta_0 + \beta_1 Sex_i + \epsilon_i$$

Regression Statistics				
Multiple R	0.346541			
R Square	0.120091			
Adjusted R Square	0.115819			
Standard Error	10.58426			
Observations	208			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3149.634	3149.6	28.1151	2.93545E-07
Residual	206	23077.47	112.03		
Total	207	26227.11			

	Coefficientst	Coefficientstandard Ern		P-value	Lower 95%	Upper 95%
Intercept	37.20993	0.894533	41.597	3E-102	35.44631451	38.9735426
Gender	8.295513	1.564493	5.3024	2.9E-07	5.211041089	11.3799841

 $\hat{\beta}_1 = b_1 = 8.29...$ on average, a male makes approximately \$8,300 more than a female in this firm.

How should the plaintiff's lawyer use the confidence interval in his presentation?

How can the defense attorney try to counteract the plaintiff's argument?

Perhaps, the observed difference in salaries is related to other variables in the background and NOT to policy discrimination...

Obviously, there are many other factors which we can legitimately use in determining salaries:

- education
- job productivity
- experience

How can we use regression to incorporate additional information?

Let's add a measure of experience...

$$Salary_i = \beta_0 + \beta_1 Sex_i + \beta_2 Exp_i + \epsilon_i$$

What does that mean?

$$E[Salary|Sex = 0, Exp] = \beta_0 + \beta_2 Exp$$
$$E[Salary|Sex = 1, Exp] = (\beta_0 + \beta_1) + \beta_2 Exp$$

The data gives us the "year hired" as a measure of experience...

YrHired Gender Salary Sex

1	92	Male	32.00	1
2	81	Female	39.10	0
3	83	Female	33.20	0
4	87	Female	30.60	0
5	92	Male	29.00	1
	• • •			
208	62	Female	30.00	0

$$Salary_i = \beta_0 + \beta_1 Sex_i + \beta_2 Exp + \epsilon_i$$

Regression Statistics						
Multiple R	0.700680156					
R Square	0.490952681					
Adjusted R	0.485986366					
Standard E	8.070070757					
Observation	208					

ANOVA

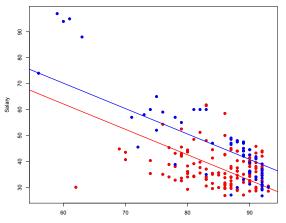
	df	SS	MS	F	Significance F
Regression	2	12876.27	6438	98.8565	8.7642E-31
Residual	205	13350.84	65.13		
Total	207	26227.11			

	Coefficients	tandard Ern	t Stat	P-value	Lower 95%	Upper 95%
Intercept	121.0212441	6.891851	17.56	9.8E-43	107.433246	134.6092
Gender	8.011885777	1.193089	6.715	1.8E-10	5.65958805	10.36418
YrHired	-0.981150947	0.080285	-12.22	3.7E-26	-1.1394402	-0.822862

$$Salary_i = 121 + 8Sex_i - 0.98Exp_i + \epsilon_i$$

Is this good or bad news for the defense?

$$Salary_{i} = \begin{cases} 121 - 0.98Exp_{i} + \epsilon_{i} & \text{females} \\ 129 - 0.98Exp_{i} + \epsilon_{i} & \text{males} \end{cases}$$



76

We can use dummy variables in situations in which there are more than two categories. Dummy variables are needed for each category except one, designated as the "base" category.

Why? Remember that the numerical value of each category has no quantitative meaning!

We want to evaluate the difference in house prices in a couple of different neighborhoods.

	Nbhd	SqFt	Price
1	2	1.79	114.3
2	2	2.03	114.2
3	2	1.74	114.8
4	2	1.98	94.7
5	2	2.13	119.8
6	1	1.78	114.6
7	3	1.83	151.6
8	3	2.16	150.7

. . .

Let's create the dummy variables *dn*1, *dn*2 and *dn*3...

	Nbhd	SqFt	Price	dn1	dn2	dn3
1	2	1.79	114.3	0	1	0
2	2	2.03	114.2	0	1	0
3	2	1.74	114.8	0	1	0
4	2	1.98	94.7	0	1	0
5	2	2.13	119.8	0	1	0
6	1	1.78	114.6	1	0	0
7	3	1.83	151.6	0	0	1
8	3	2.16	150.7	0	0	1

$$Price_{i} = \beta_{0} + \beta_{1}dn1_{i} + \beta_{2}dn2_{i} + \beta_{3}Size_{i} + \epsilon_{i}$$

$$E[Price|dn1 = 1, Size] = \beta_0 + \beta_1 + \beta_3 Size \quad (Nbhd 1)$$
$$E[Price|dn2 = 1, Size] = \beta_0 + \beta_2 + \beta_3 Size \quad (Nbhd 2)$$
$$E[Price|dn1 = 0, dn2 = 0, Size] = \beta_0 + \beta_3 Size \quad (Nbhd 3)$$

$$Price_i = \beta_0 + \beta_1 dn 1 + \beta_2 dn 2 + \beta_3 Size + \epsilon_i$$

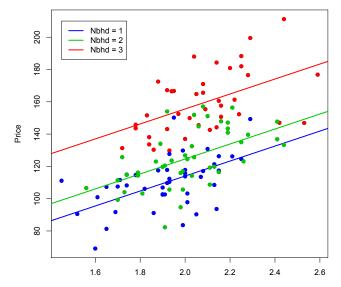
Regression Statis	tics
Multiple R	0.828
R Square	0.685
Adjusted R Square	0.677
Standard Error	15.260
Observations	128

ANOVA

	df		SS	MS	F	gnificance F
Regression		3	62809.1504	20936	89.9053	5.8E-31
Residual	1	24	28876.0639	232.87		
Total	1	27	91685.2143			

	Coefficients Stan	dard Erroi t	t Stat	P-value	ower 95%/	oper 95%
Intercept	62.78	14.25	4.41	0.00	34.58	90.98
dn1	-41.54	3.53 -	-11.75	0.00	-48.53	-34.54
dn2	-30.97	3.37	-9.19	0.00	-37.63	-24.30
size	46.39	6.75	6.88	0.00	33.03	59.74

 $Price_i = 62.78 - 41.54 dn 1 - 30.97 dn 2 + 46.39 Size + \epsilon_i$



Size

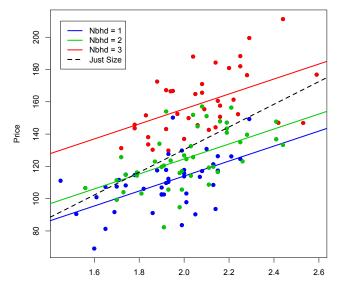
$$Price_i = \beta_0 + \beta_1 Size + \epsilon_i$$

Regression Statistics						
Multiple R	0.553					
R Square	0.306					
Adjusted R Square	0.300					
Standard Error	22.476					
Observations	128					

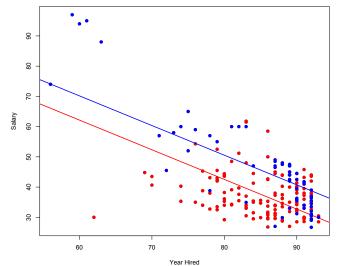
ANOVA

	df	SS	MS	F	gnificance	F
Regression	1	28036.4	28036.36	55.501	1E-11	
Residual	126	63648.9	505.1496			
Total	127	91685.2				
	Coefficients	andard Eri	t Stat	P-value	ower 95%	per 95%
Intercept	-10.09	18.97	-0.53	0.60	-47.62	27.44
size	70.23	9.43	7.45	0.00	51.57	88.88

$$Price_{i} = -10.09 + 70.23Size + \epsilon_{i}$$



Back to the Sex Discrimination Case



Does it look like the effect of experience on salary is the same for males and females?

Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope for each group?

Yes... Consider the following model:

$$Salary_i = \beta_0 + \beta_1 Exp_i + \beta_2 Sex_i + \beta_3 Exp_i \times Sex_i + \epsilon_i$$

For Females:

 $Salary_i = \beta_0 + \beta_1 Exp_i + \epsilon_i$

For Males:

 $Salary_i = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)Exp_i + \epsilon_i$

Sex Discrimination Case

How does the data look like?

	YrHired	Gender	Salary	Sex	SexExp
1	92	Male	32.00	1	92
2	81	Female	39.10	0	0
3	83	Female	33.20	0	0
4	87	Female	30.60	0	0
5	92	Male	29.00	1	92
•					
20	08 62	Female	30.00	0	62

Sex Discrimination Case

$Salary_i = \beta_0 + \beta_1 Sex_i + \beta_2 Exp + \beta_3 Exp * Sex + \epsilon_i$

Regression Statistics						
Multiple R	0.799130351					
R Square	0.638609318					
Adjusted R S	0.63329475					
Standard Err	6.816298288					
Observation:	208					

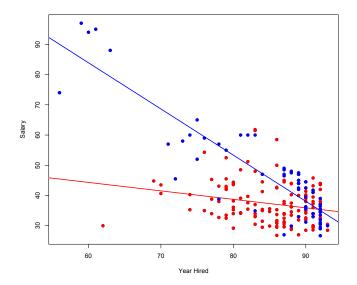
ANOVA

	df	SS	MS	F	Significance F
Regression	3	16748.88	5582.96	120.16	7.513E-45
Residual	204	9478.232	46.4619		
Total	207	26227.11			

	Coefficients	tandard Erre	t Stat	P-value	Lower 95%	Upper 95%
Intercept	61.12479795	8.770854	6.96908	4E-11	43.831649	78.41795
Gender	114.4425931	11.7012	9.78041	9E-19	91.371794	137.5134
YrHired	-0.279963351	0.102456	-2.7325	0.0068	-0.4819713	-0.077955
GenderExp	-1.247798369	0.136676	-9.1296	7E-17	-1.5172765	-0.97832

$$Salary_i = 61 + 114Sex_i + -0.27Exp + -1.24Exp * Sex + \epsilon_i$$

Sex Discrimination Case



Is this good or bad news for the plaintiff?

Variable Interaction

So, the effect of experience on salary is different for males and females... in general, when the effect of the variable X_1 onto Y depends on another variable X_2 we say that X_1 and X_2 interact with each other.

We can extend this notion by the inclusion of multiplicative effects through interaction terms.

We will pick this up in our next section...