
Advanced Regression
Summer Statistics Institute

Day 1: Introduction to Linear Regression
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Course Overview

Day 1: Intro and Simple Regression Model

Day 2: Multiple Regression, Dummy Variables and

Interactions

Day 3: Transformations, Non-linear models and Model

Selection

Day 4: Time Series, Logistic Regression and more...

2



Regression: General Introduction

I Regression analysis is the most widely used statistical tool for

understanding relationships among variables

I It provides a conceptually simple method for investigating

functional relationships between one or more factors and an

outcome of interest

I The relationship is expressed in the form of an equation or a

model connecting the response or dependent variable and one

or more explanatory or predictor variable
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Regression in Business

I Optimal portfolio choice:

- Predict future joint distribution of asset returns

- Construct optimal portfolio (choose weights)

I Determining price and marketing strategy:

- Estimate the effect of price and advertisement on sales

- Decide what is optimal price and ad campaign

I Credit scoring model:

- Predict future probability of default using known

characteristics of borrower

- Decide whether or not to lend (and if so, how much)
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Why?

Straight prediction questions:

I For who much will my house sell?

I How many runs per game will the Red Sox score in 2011?

I Will this person like that movie? (Netflix prize)

Explanation and understanding:

I What is the impact of MBA on income?

I How does the returns of a mutual fund relates to the market?

I Does Wallmart discriminates against women regarding

salaries?
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1st Example: Predicting House Prices

Problem:

I Predict market price based on observed characteristics

Solution:

I Look at property sales data where we know the price and

some observed characteristics.

I Build a decision rule that predicts price as a function of the

observed characteristics.
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Predicting House Prices

What characteristics do we use?

We have to define the variables of interest and develop a specific

quantitative measure of these variables

I Many factors or variables affect the price of a house

I size

I number of baths

I garage, air conditioning, etc

I neighborhood

I Easy to quantify price and size but what about other variables

such as aesthetics, workmanship, etc?
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Predicting House Prices

To keep things super simple, let’s focus only on size.

The value that we seek to predict is called the

dependent (or output) variable, and we denote this:

I Y = price of house (e.g. thousands of dollars)

The variable that we use to guide prediction is the

explanatory (or input) variable, and this is labelled

I X = size of house (e.g. thousands of square feet)
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Predicting House Prices

What does this data look like?
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Predicting House Prices

It is much more useful to look at a scatterplot
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In other words, view the data as points in the X × Y plane.
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Regression Model

Y = response or outcome variable

X 1,X 2,X 3, . . . ,Xp = explanatory or input variables

The general relationship approximated by:

Y = f (X1,X2, . . . ,Xp) + e

And a linear relationship is written

Y = b0 + b1X1 + b2X2 + . . .+ bpXp + e
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Linear Prediction

Appears to be a linear relationship between price and size:

As size goes up, price goes up.

The line shown was fit by the “eyeball” method.
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Linear Prediction

Recall that the equation of a line is:

Y = b0 + b1X

Where b0 is the intercept and b1 is the slope.

The intercept value is in units of Y ($1,000).

The slope is in units of Y per units of X ($1,000/1,000 sq ft).
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Linear Prediction

Y 

X 

b0 

2 1 

b1 

Y = b0 + b1X 

Our “eyeball” line has b0 = 35, b1 = 40.
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Linear Prediction

We can now predict the price of a house when we know only the

size; just read the value off the line that we’ve drawn.

For example, given a house with of size X = 2.2.

Predicted price Ŷ = 35 + 40(2.2) = 123.

Note: Conversion from 1,000 sq ft to $1,000 is done for us by the

slope coefficient (b1)
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Linear Prediction

Can we do better than the eyeball method?

We desire a strategy for estimating the slope and intercept

parameters in the model Ŷ = b0 + b1X

A reasonable way to fit a line is to minimize the amount by which

the fitted value differs from the actual value.

This amount is called the residual.
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Linear Prediction

What is the “fitted value”?

Yi 

Xi 

Ŷi 

The dots are the observed values and the line represents our fitted

values given by Ŷi = b0 + b1X1 .
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Linear Prediction

What is the “residual”’ for the ith observation’?

Yi 

Xi 

Ŷi 
ei = Yi – Ŷi = Residual i  

We can write Yi = Ŷi + (Yi − Ŷi ) = Ŷi + ei .
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Least Squares

Ideally we want to minimize the size of all residuals:

I If they were all zero we would have a perfect line.

I Trade-off between moving closer to some points and at the

same time moving away from other points.

The line fitting process:

I Give weights to all of the residuals.

I Minimize the “total” of residuals to get best fit.

Least Squares chooses b0 and b1 to minimize
∑N

i=1 e2
i

N∑
i=1

e2
i = e2

1 +e2
2 +· · ·+e2

N = (Y1−Ŷ1)2+(Y2−Ŷ2)2+· · ·+(YN−ŶN)2
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Least Squares

Yi 

Xi 

positive residuals  
negative residuals  

Choose the line to minimize the sum of the squares of the residuals,

n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi )
2 =

n∑
i=1

(Yi − [b0 + b1Xi ])
2
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Least Squares

LS chooses a different line from ours:

I b0 = 38.88 and b1 = 35.39

I What do b0 and b1 mean again?

LS line 

Our line 

21



Eyeball vs. LS Residuals

I eyeball: b0 = 35, b1 = 40

I LS: b0 = 38.88, b1 = 35.39

Size Price yhat-eyeball yhat-LS e-eyeball e-LS e2-eyeball e2-LS
0.80 70 67 67.19 3.00 2.81 9.00 7.88
0.90 83 71 70.73 12.00 12.27 144.00 150.51
1.00 74 75 74.27 -1.00 -0.27 1.00 0.07
1.10 93 79 77.81 14.00 15.19 196.00 230.76
1.40 89 91 88.42 -2.00 0.58 4.00 0.33
1.40 58 91 88.42 -33.00 -30.42 1089.00 925.67
1.50 85 95 91.96 -10.00 -6.96 100.00 48.49
1.60 114 99 95.50 15.00 18.50 225.00 342.17
1.80 95 107 102.58 -12.00 -7.58 144.00 57.44
2.00 100 115 109.66 -15.00 -9.66 225.00 93.25
2.40 138 131 123.81 7.00 14.19 49.00 201.33
2.50 111 135 127.35 -24.00 -16.35 576.00 267.30
2.70 124 143 134.43 -19.00 -10.43 361.00 108.71
3.20 161 163 152.12 -2.00 8.88 4.00 78.86
3.50 172 175 162.74 -3.00 9.26 9.00 85.84

sum -70.00 0.00 3136.00 2598.63
b0-eyeball b1-eyeball b0-LSb1-LS

35 40 35.3859 22



Least Squares – Excel Output

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.909209967
R Square 0.826662764
Adjusted R Square 0.81332913
Standard Error 14.13839732
Observations 15

ANOVA
df SS MS F Significance F

Regression 1 12393.10771 12393.10771 61.99831126 2.65987E-06
Residual 13 2598.625623 199.8942787
Total 14 14991.73333

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 38.88468274 9.09390389 4.275906499 0.000902712 19.23849785
Size 35.38596255 4.494082942 7.873900638 2.65987E-06 25.67708664

Upper 95%
58.53086763
45.09483846

Excel Break...

I Scatterplots, linear function

I Regression 23



2nd Example: Offensive Performance in Baseball

1. Problems:

I Evaluate/compare traditional measures of offensive

performance

I Help evaluate the worth of a player

2. Solutions:

I Compare prediction rules that forecast runs as a function of

either AVG (batting average), SLG (slugging percentage) or

OBP (on base percentage)
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2nd Example: Offensive Performance in Baseball
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Baseball Data – Using AVG
Each observation corresponds to a team in MLB. Each quantity is

the average over a season.

I Y = runs per game; X = AVG (average)

LS fit: Runs/Game = -3.93 + 33.57 AVG
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Baseball Data – Using SLG

I Y = runs per game

I X = SLG (slugging percentage)

LS fit: Runs/Game = -2.52 + 17.54 SLG 27



Baseball Data – Using OBP

I Y = runs per game

I X = OBP (on base percentage)

LS fit: Runs/Game = -7.78 + 37.46 OBP 28



Baseball Data

I What is the best prediction rule?

I Let’s compare the predictive ability of each model using the

average squared error

1

N

N∑
i=1

e2
i =

∑N
i=1

(
R̂unsi − Runsi

)2

N
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Place your Money on OBP!!!

Average Squared Error

AVG 0.083

SLG 0.055

OBP 0.026
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Linear Prediction

Ŷi = b0 + b1Xi

I b0 is the intercept and b1 is the slope

I We find b0 and b1 using Least Squares
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The Least Squares Criterion

The formulas for b0 and b1 that minimize the least squares

criterion are:

b1 = rxy ×
sy

sx
b0 = Ȳ − b1X̄

where,

I X̄ and Ȳ are the sample mean of X and Y

I corr(x , y) = rxy is the sample correlation

I sx and sy are the sample standard deviation of X and Y
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Sample Mean and Sample Variance

I Sample Mean: measure of centrality

Ȳ =
1

n

n∑
i=1

Yi

I Sample Variance: measure of spread

s2
y =

1

n − 1

n∑
i=1

(
Yi − Ȳ

)2

I Sample Standard Deviation:

sy =
√

s2
y
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Example

s2
y =

1

n − 1

n∑
i=1

(
Yi − Ȳ

)2
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Covariance
Measure the direction and strength of the linear relationship between Y and X

Cov(Y , X ) =

Pn
i=1 (Yi − Ȳ )(Xi − X̄ )

n − 1
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(Yi − Ȳ )(Xi − X̄) < 0

X̄

Ȳ
I sy = 15.98, sx = 9.7

I Cov(X ,Y ) = 125.9

How do we interpret that?
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Correlation

Correlation is the standardized covariance:

corr(X ,Y ) =
cov(X ,Y )√

s2
x s2

y

=
cov(X ,Y )

sxsy

The correlation is scale invariant and the units of measurement

don’t matter: It is always true that −1 ≤ corr(X ,Y ) ≤ 1.

This gives the direction (- or +) and strength (0→ 1)

of the linear relationship between X and Y .

36



Correlation

corr(Y ,X ) =
cov(X ,Y )√

s2
x s2

y

=
cov(X ,Y )

sxsy
=

125.9

15.98× 9.7
= 0.812
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Correlation

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

corr = 1

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

corr = .5

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

corr = .8

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

corr = -.8

38



Correlation
Only measures linear relationships:

corr(X ,Y ) = 0 does not mean the variables are not related!
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corr = 0.72

Also be careful with influential observations. Excel Break: correl,

stdev,...
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Back to Least Squares

1. Intercept:

b0 = Ȳ − b1X̄ ⇒ Ȳ = b0 + b1X̄

I The point (X̄ , Ȳ ) is on the regression line!

I Least squares finds the point of means and rotate the line

through that point until getting the “right” slope

2. Slope:

b1 = corr(X ,Y )× sY

sX
=

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2

=
Cov(X ,Y )

var(X )

I So, the right slope is the correlation coefficient times a scaling

factor that ensures the proper units for b1 40



More on Least Squares

From now on, terms “fitted values” (Ŷi ) and “residuals” (ei ) refer

to those obtained from the least squares line.

The fitted values and residuals have some special properties. Lets

look at the housing data analysis to figure out what these

properties are...
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The Fitted Values and X

1.0 1.5 2.0 2.5 3.0 3.5

80
10
0

12
0

14
0

16
0

X

Fi
tte

d 
V

al
ue

s

corr(y.hat, x) = 1

42



The Residuals and X
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Why?

What is the intuition for the relationship between Ŷ and e and X ?

Lets consider some “crazy”alternative line:
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LS line: 38.9 + 35.4 X

Crazy line: 10 + 50 X
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Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses

and overestimating the value of big houses.
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Clearly, we have left some predictive ability on the table!
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Fitted Values and Residuals

As long as the correlation between e and X is non-zero, we could

always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values and

put this into Ŷ , leaving no “Xness” in the residuals.

In Summary: Y = Ŷ + e where:

I Ŷ is “made from X ”; corr(X , Ŷ ) = 1.

I e is unrelated to X ; corr(X , e) = 0.
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Another way to derive things (Optional)

The intercept:

1

n

n∑
i=1

ei = 0 ⇒ 1

n

n∑
i=1

(Yi − b0 − b1Xi)

⇒ Ȳ − b0 − b1X̄ = 0

⇒ b0 = Ȳ − b1X̄
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Another way to derive things (Optional)

The slope:

corr(e,X ) =
n∑

i=1

ei(Xi − X̄ ) = 0

=
n∑

i=1

(Yi − b0 − b1Xi)(Xi − X̄ )

=
n∑

i=1

(Yi − Ȳ − b1(Xi − X̄ ))(Xi − X̄ )

⇒ b1 =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2
= rxy

sy
sx
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Decomposing the Variance

How well does the least squares line explain variation in Y ?

Remember that Y = Ŷ + e

Since Ŷ and e are uncorrelated, i.e. corr(Ŷ , e) = 0,

var(Y ) = var(Ŷ + e) = var(Ŷ ) + var(e)∑n
i=1(Yi − Ȳ )2

n − 1
=

∑n
i=1(Ŷi − ¯̂Y )2

n − 1
+

∑n
i=1(ei − ē)2

n − 1

Given that ē = 0, and ¯̂Y = Ȳ (why?) we get to:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

e2
i

49



Decomposing the Variance

SSR: Variation in Y explained by the regression line.

SSE: Variation in Y that is left unexplained.

SSR = SST ⇒ perfect fit.

Be careful of similar acronyms; e.g. SSR for “residual” SS.
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Decomposing the Variance

(Yi−Ȳ ) = Ŷi + ei−Ȳ

= (Ŷi − Ȳ ) + ei

Week II. Slide 23
Applied Regression Analysis – Fall 2008 
Matt Taddy

Decomposing the Variance – The ANOVA Table
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A Goodness of Fit Measure: R2

The coefficient of determination, denoted by R2,

measures goodness of fit:

R2 =
SSR

SST
= 1− SSE

SST

I 0 < R2 < 1.

I The closer R2 is to 1, the better the fit.
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A Goodness of Fit Measure: R2 (Optional)

An interesting fact: R2 = r 2
xy ( i.e., R2 is squared correlation).

R2 =

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

=

∑n
i=1(b0 + b1Xi − b0 − b1X̄ )2∑n

i=1(Yi − Ȳ )2

=
b2

1

∑n
i=1(Xi − X̄ )2∑n

i=1(Yi − Ȳ )2
=

b2
1s2

x

s2
y

= r 2
xy

No surprise: the higher the sample correlation between

X and Y , the better you are doing in your regression.
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Back to the House Data

!""#$%%&$'()*"$+,
Applied Regression Analysis
Carlos M. Carvalho

Back to the House Data

''-
''.

''/

R2 =
SSR

SST
= 0.82 =

12395

14991
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Back to Baseball

Three very similar, related ways to look at a simple linear

regression... with only one X variable, life is easy!

R2 corr SSE

OBP 0.88 0.94 0.79

SLG 0.76 0.87 1.64

AVG 0.63 0.79 2.49
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Review Break...

Before moving on we need to review the NORMAL distribution
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The Normal Distribution

I A random variable is a number we are NOT sure about but

we might have some idea of how to describe its potential

outcomes. The Normal distribution is the most used

probability distribution to describe a random variable

I The probability the number ends up in an interval is given by

the area under the curve (pdf)
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The Normal Distribution

I The standard Normal distribution has mean 0 and has

variance 1.

I Notation: If Z ∼ N(0, 1) (Z is the random variable)

Pr(−1 < Z < 1) = 0.68

Pr(−1.96 < Z < 1.96) = 0.95
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The Normal Distribution

Note:

For simplicity we will often use P(−2 < Z < 2) ≈ 0.95

Questions:

I What is Pr(Z < 2) ? How about Pr(Z ≤ 2)?

I What is Pr(Z < 0)?
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The Normal Distribution

I The standard normal is not that useful by itself. When we say

“the normal distribution”, we really mean a family of

distributions.

I We obtain pdfs in the normal family by shifting the bell curve

around and spreading it out (or tightening it up).
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The Normal Distribution

I We write X ∼ N(µ, σ2). “Normal distribution with mean µ

and variance σ2.

I The parameter µ determines where the curve is. The center of

the curve is µ.

I The parameter σ determines how spread out the curve is. The

area under the curve in the interval (µ− 2σ, µ+ 2σ) is 95%.

Pr(µ− 2σ < X < µ+ 2σ) ≈ 0.95

x

µµ µµ ++ σσ µµ ++ 2σσµµ −− σσµµ −− 2σσ 61



The Normal Distribution

I Example: Below are the pdfs of X1 ∼ N(0, 1), X2 ∼ N(3, 1),

and X3 ∼ N(0, 16).

I Which pdf goes with which X ?

−8 −6 −4 −2 0 2 4 6 8 62



The Normal Distribution – Example

I Assume the annual returns on the SP500 are normally

distributed with mean 6% and standard deviation 15%.

SP500 ∼ N(6, 225). (Notice: 152 = 225).

I Two questions: (i) What is the chance of losing money on a

given year? (ii) What is the value that there’s only a 2%

chance of losing that or more?

I Lloyd Blankfein: “I spend 98% of my time thinking about 2%

probability events!”

I (i) Pr(SP500 < 0) and (ii) Pr(SP500 <?) = 0.02
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The Normal Distribution – Example
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prob is 2%

I (i) Pr(SP500 < 0) = 0.35 and (ii) Pr(SP500 < −25) = 0.02

I In Excel: NORMDIST and NORMINV (homework!)
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The Normal Distribution

1. Note: In

X ∼ N(µ, σ2)

µ is the mean and σ2 is the variance.

2. Standardization: if X ∼ N(µ, σ2) then

Z =
X − µ
σ

∼ N(0, 1)

3. Summary:

X ∼ N(µ, σ2):

µ: where the curve is

σ: how spread out the curve is

95% chance X ∈ µ± 2σ.
65



The Normal Distribution – Another Example

Prior to the 1987 crash, monthly S&P500 returns (r) followed

(approximately) a normal with mean 0.012 and standard deviation

equal to 0.043. How extreme was the crash of -0.2176? The

standardization helps us interpret these numbers...

r ∼ N(0.012, 0.0432)

z =
r − 0.012

0.043
∼ N(0, 1)

For the crash,

z =
−0.2176− 0.012

0.043
= −5.27

How extreme is this zvalue? 5 standard deviations away!! 66



Prediction and the Modeling Goal

A prediction rule is any function where you input X and it

outputs Ŷ as a predicted response at X .

The least squares line is a prediction rule:

Ŷ = f (X ) = b0 + b1X
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Prediction and the Modeling Goal

Ŷ is not going to be a perfect prediction.

We need to devise a notion of forecast accuracy.
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Prediction and the Modeling Goal

There are two things that we want to know:

I What value of Y can we expect for a given X?

I How sure are we about this forecast? Or how different could

Y be from what we expect?

Our goal is to measure the accuracy of our forecasts or how much

uncertainty there is in the forecast. One method is to specify a

range of Y values that are likely, given an X value.

Prediction Interval: probable range for Y-values given X
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Prediction and the Modeling Goal

Key Insight: To construct a prediction interval, we will have to

assess the likely range of error values corresponding to a Y value

that has not yet been observed!

We will build a probability model (e.g., normal distribution).

Then we can say something like “with 95% probability the error

will be no less than -$28,000 or larger than $28,000”.

We must also acknowledge that the “fitted” line may be fooled by

particular realizations of the residuals.
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Prediction and the Modeling Goal

I Suppose you only had the purple points in the graph. The

dashed line fits the purple points. The solid line fits all the

points. Which line is better? Why?
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I In summary, we need to work with the notion of a “true line”

and a probability distribution that describes deviation around

the line. 71



The Simple Linear Regression Model
The power of statistical inference comes from the ability to make

precise statements about the accuracy of the forecasts.

In order to do this we must invest in a probability model.

Simple Linear Regression Model: Y = β0 + β1X + ε

ε ∼ N(0, σ2)

I β0 + β1X represents the “true line”; The part of Y that

depends on X .

I The error term ε is independent “idosyncratic noise”; The

part of Y not associated with X .
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The Simple Linear Regression Model

Y = β0 + β1X + ε
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The Simple Linear Regression Model – Example

You are told (without looking at the data) that

β0 = 40; β1 = 45; σ = 10

and you are asked to predict price of a 1500 square foot house.

What do you know about Y from the model?

Y = 40 + 45(1.5) + ε

= 107.5 + ε

Thus our prediction for price is Y |X = 1.5 ∼ N(107.5, 102)

and a 95% Prediction Interval for Y is 87.5 < Y < 127.5
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Conditional Distributions
Y = β0 + β1X + ε
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The conditional distribution for Y given X is Normal:

Y |X = x ∼ N(β0 + β1x , σ2).
75



Prediction Intervals (one more time!)

The model says that the mean value of a 1500 sq. ft. house is

$107,500 and that deviation from mean is within ≈ $20,000.

We are 95% sure that

I −20 < ε < 20

I 87.5 < Y < 127.5

In general, the 95 % Prediction Interval is PI = β0 + β1X ± 2σ.
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Conditional Distributions

Why do we have ε ∼ N(0, σ2)?

I E [ε] = 0⇔ E [Y | X ] = β0 + β1X

(E [Y | X ] is “conditional expectation of Y given X ”).

I Many things are close to Normal (central limit theorem).

I It works! This is a very robust model for the world.

We can think of β0 + β1X as the “true” regression line.
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Conditional Distributions

Regression models are really all about modeling the conditional

distribution of Y given X .

Why are conditional distributions important?

Given that I know X what kind of Y can I expect? Our model

provides one way to think about this question.

We can also look at this by “slicing” the cloud of points in the

scatterplot to obtain the distribution of Y conditional on various

ranges of X values.
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Data Conditional Distribution vs Marginal Distribution

Let’s consider a regression of house price on size:
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Conditional Distribution and Marginal Distribution

Key Observations from these plots:

I Conditional distributions answer the forecasting problem: if I

know that a house is between 1 and 1.5 1000 sq.ft., then the

conditional distribution (second boxplot) gives me a point

forecast (the mean) and prediction interval.

I The conditional means seem to line up along the regression

line.

I The conditional distributions have much smaller dispersion

than the marginal distribution.
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Conditional Distribution vs Marginal Distribution

This suggests two general points:

I If X has no forecasting power, then the marginal and

conditionals will be the same.

I If X has some forecasting information, then conditional means

will be different than the marginal or overall mean and

conditional standard deviation of Y given X will be less than

the marginal standard deviation of Y.
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Conditional Distribution vs Marginal Distribution

Intuition from an example where X has no predictive power.
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Conditional Distributions
The conditional distribution for Y given X is Normal:

Y |X ∼ N(β0 + β1X , σ2).

σ controls dispersion:
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Conditional vs Marginal Distributions

More on the conditional distribution:

Y |X ∼ N(E [Y |X ], var(Y |X )).

I The conditional mean is

E [Y |X ] = E [β0 + β1X + ε] = β0 + β1X .

I The conditional variance is

var(Y |X ) = var(β0 + β1X + ε) = var(ε) = σ2.

Remember our sliced boxplots:

I σ2 < var(Y ) if X and Y are related.
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Summary of Simple Linear Regression

Assume that all observations are drawn from our regression model

and that errors on those observations are independent.

The model is

Yi = β0 + β1Xi + εi

where ε is independent and identically distributed N(0, σ2).

I independence means that knowing εi doesn’t affect your views

about εj

I identically distributed means that we are using the same

normal for every εi
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Summary of Simple Linear Regression

The model is

Yi = β0 + β1Xi + εi

εi ∼ N(0, σ2).

The SLR has 3 basic parameters:

I β0, β1 (linear pattern)

I σ (variation around the line).
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Key Characteristics of Linear Regression Model

I Mean of Y is linear in X .

I Error terms (deviations from line) are normally distributed

(very few deviations are more than 2 sd away from the

regression mean).

I Error terms have constant variance.
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Estimation for the SLR Model

SLR assumes every observation in the dataset was generated by

the model:

Yi = β0 + β1Xi + εi

This is a model for the conditional distribution of Y given X.

We use Least Squares to estimate β0 and β1:

β̂1 = b1 = rxy ×
sy

sx

β̂0 = b0 = Ȳ − b1X̄
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Estimation for the SLR Model
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Estimation of Error Variance

We estimate s2 with:

s2 =
1

n − 2

n∑
i=1

e2
i =

SSE

n − 2

(2 is the number of regression coefficients; i.e. 2 for β0 and β1).

We have n − 2 degrees of freedom because 2 have been “used up”

in the estimation of b0 and b1.

We usually use s =
√

SSE/(n − 2), in the same units as Y . It’s

also called the regression standard error.
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Degrees of Freedom

Degrees of Freedom is the number of times you get to observe

useful information about the variance you’re trying to estimate.

For example, consider SST =
∑n

i=1(Yi − Ȳ )2:

I If n = 1, Ȳ = Y1 and SST = 0: since Y1 is “used up”

estimating the mean, we haven’t observed any variability!

I For n > 1, we’ve only had n − 1 chances for deviation from

the mean, and we estimate s2
y = SST/(n − 1).

In regression with p coefficients (e.g., p = 2 in SLR), you only get

n − p real observations of variability ⇒ DoF = n − p.
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Estimation of Error Variance

Where is s in the Excel output?

!""#$%%%&$'()*"$+
Applied Regression Analysis 
Carlos M. Carvalho

Estimation of 2

!,"-"$).$s )/$0,"$123"($4506507

8"9"9:"-$;,"/"<"-$=45$.""$>.0?/*?-*$"--4-@$-"?*$)0$?.$estimated
.0?/*?-*$*"<)?0)4/&$ ).$0,"$.0?/*?-*$*"<)?0)4/

.

Remember that whenever you see “standard error” read it as

estimated standard deviation: σ is the standard deviation.
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One Picture Summary of SLR

I The plot below has the house data, the fitted regression line

(b0 + b1X ) and ±2 ∗ s...

I From this picture, what can you tell me about β0, β1 and σ2?

How about b0, b1 and s2?
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Sampling Distribution of Least Squares Estimates

How much do our estimates depend on the particular random

sample that we happen to observe? Imagine:

I Randomly draw different samples of the same size.

I For each sample, compute the estimates b0, b1, and s.

If the estimates don’t vary much from sample to sample, then it

doesn’t matter which sample you happen to observe.

If the estimates do vary a lot, then it matters which sample you

happen to observe.
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The Importance of Understanding Variation

When estimating a quantity, it is vital to develop a notion of the

precision of the estimation; for example:

I estimate the slope of the regression line

I estimate the value of a house given its size

I estimate the expected return on a portfolio

I estimate the value of a brand name

I estimate the damages from patent infringement

Why is this important?

We are making decisions based on estimates, and these may be

very sensitive to the accuracy of the estimates!

95



Sampling Distribution of Least Squares Estimates
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Sampling Distribution of Least Squares Estimates
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Sampling Distribution of Least Squares Estimates

LS lines are much closer to the true line when n = 50.

For n = 5, some lines are close, others aren’t:

we need to get “lucky”
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Sampling Distribution of b1

The sampling distribution of b1 describes how estimator b1 = β̂1

varies over different samples with the X values fixed.

It turns out that b1 is normally distributed (approximately):

b1 ∼ N(β1, s
2
b1

).

I b1 is unbiased: E [b1] = β1.

I sb1 is the standard error of b1. In general, the standard error is

the standard deviation of an estimate. It determines how close

b1 is to β1.

I This is a number directly available from the regression output.
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Sampling Distribution of b1

Can we intuit what should be in the formula for sb1?

I How should s figure in the formula?

I What about n?

I Anything else?

s2
b1

=
s2∑

(Xi − X̄ )2
=

s2

(n − 1)s2
x

Three Factors:

sample size (n), error variance (s2), and X -spread (sx).
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Sampling Distribution of b0

The intercept is also normal and unbiased: b0 ∼ N(β0, s
2
b0

).

s2
b0

= var(b0) = s2

(
1

n
+

X̄ 2

(n − 1)s2
x

)

What is the intuition here?
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Example: Runs per Game and AVG

I blue line: all points

I red line: only purple points

I Which slope is closer to the true one? How much closer?
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Example: Runs per Game and AVG

Regression with all points

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833

sb1 = 4.78
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Example: Runs per Game and AVG

Regression with subsample

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.933601392
R  Square 0.87161156
Adjusted  R  Square 0.828815413
Standard  Error 0.244815842
Observations 5

ANOVA
df SS MS F Significance  F

Regression 1 1.220667405 1.220667 20.36659 0.0203329
Residual 3 0.17980439 0.059935
Total 4 1.400471795

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐7.956288201 2.874375987 -­‐2.76801 0.069684 -­‐17.10384 1.191259
AVG 48.69444328 10.78997028 4.512936 0.020333 14.355942 83.03294

sb1 = 10.78
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Example: Runs per Game and AVG

b1 ∼ N(β1, s
2
b1

)

I Suppose β1 = 35

I blue line: N(35, 4.782); red line: N(35, 10.782)

I (b1 − β1) ≈ ±2× sb1
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Confidence Intervals

Since b1 ∼ N(β1, s
2
b1

), Thus:

I 68% Confidence Interval: b1 ± 1× sb1

I 95% Confidence Interval: b1 ± 2× sb1

I 99% Confidence Interval: b1 ± 3× sb1

Same thing for b0

I 95% Confidence Interval: b0 ± 2× sb0

The confidence interval provides you with a set of plausible

values for the parameters
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Example: Runs per Game and AVG

Regression with all points

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833

[b1 − 2× sb1 ; b1 + 2× sb1 ] ≈ [23.77; 43.36]
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Testing

Suppose we want to assess whether or not β1 equals a proposed

value β0
1 . This is called hypothesis testing.

Formally we test the null hypothesis:

H0 : β1 = β0
1

vs. the alternative

H1 : β1 6= β0
1
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Testing

That are 2 ways we can think about testing:

1. Building a test statistic... the t-stat,

t =
b1 − β0

1

sb1

This quantity measures how many standard deviations the

estimate (b1) from the proposed value (β0
1).

If the absolute value of t is greater than 2, we need to worry

(why?)... we reject the hypothesis.
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Testing

2. Looking at the confidence interval. If the proposed value is

outside the confidence interval you reject the hypothesis.

Notice that this is equivalent to the t-stat. An absolute value

for t greater than 2 implies that the proposed value is outside

the confidence interval... therefore reject.

This is my preferred approach for the testing problem. You

can’t go wrong by using the confidence interval!
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Example: Mutual Funds

Let’s investigate the performance of the Windsor Fund, an

aggressive large cap fund by Vanguard...

!""#$%%&$'()*"$+,
Applied Regression Analysis
Carlos M. Carvalho

Another Example of Conditional Distributions

-"./0$(11#$2.$2$032.."45426$17$.8"$*2.29$

The plot shows monthly returns for Windsor vs. the S&P500 111



Example: Mutual Funds

Consider a CAPM regression for the Windsor mutual fund.

rw = β0 + β1rsp500 + ε

Let’s first test β1 = 0

H0 : β1 = 0. Is the Windsor fund related to the market?

H1 : β1 6= 0
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Example: Mutual Funds

!""#$%%%&$'()*"$+,
Applied Regression Analysis 
Carlos M. Carvalho

-"./(($01"$!)2*345$5"65"33)42$72$8$,9:;<
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Hypothesis Testing – Windsor Fund Example

I t = 32.10... reject β1 = 0!!

I the 95% confidence interval is [0.87; 0.99]... again, reject!!
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Example: Mutual Funds

Now let’s test β1 = 1. What does that mean?

H0 : β1 = 1 Windsor is as risky as the market.

H1 : β1 6= 1 and Windsor softens or exaggerates market moves.

We are asking whether or not Windsor moves in a different way

than the market (e.g., is it more conservative?).

114



Example: Mutual Funds

!""#$%%%&$'()*"$+,
Applied Regression Analysis 
Carlos M. Carvalho

-"./(($01"$!)2*345$5"65"33)42$72$8$,9:;<

b! sb! b
sb
!

!

Hypothesis Testing – Windsor Fund Example

I t = b1−1
sb1

= −0.0643
0.0291 = −2.205... reject.

I the 95% confidence interval is [0.87; 0.99]... again, reject,

but...
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Testing – Why I like Conf. Int.

I Suppose in testing H0 : β1 = 1 you got a t-stat of 6 and the

confidence interval was

[1.00001, 1.00002]

Do you reject H0 : β1 = 1? Could you justify that to you

boss? Probably not! (why?)
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Testing – Why I like Conf. Int.

I Now, suppose in testing H0 : β1 = 1 you got a t-stat of -0.02

and the confidence interval was

[−100, 100]

Do you accept H0 : β1 = 1? Could you justify that to you

boss? Probably not! (why?)

The Confidence Interval is your best friend when it comes to

testing!!
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P-values

I The p-value provides a measure of how weird your estimate is

if the null hypothesis is true

I Small p-values are evidence against the null hypothesis

I In the AVG vs. R/G example... H0 : β1 = 0. How weird is our

estimate of b1 = 33.57?

I Remember: b1 ∼ N(β1, s
2
b1

)... If the null was true (β1 = 0),

b1 ∼ N(0, s2
b1

)
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P-values

I Where is 33.57 in the picture below?
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The p-value is the probability of seeing b1 equal or greater than

33.57 in absolute terms. Here, p-value=0.000000124!!

Small p-value = bad null 119



P-values

I H0 : β1 = 0... p-value = 1.24E-07... reject!

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833
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P-values

I How about H0 : β0 = 0? How weird is b0 = −3.936?
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The p-value (the probability of seeing b1 equal or greater than

-3.936 in absolute terms) is 0.005.

Small p-value = bad null 121



P-values

I H0 : β0 = 0... p-value = 0.005... we still reject, but not with

the same strength.

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833
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Testing – Summary

I Large t or small p-value mean the same thing...

I p-value < 0.05 is equivalent to a t-stat > 2 in absolute value

I Small p-value means something weird happen if the null

hypothesis was true...

I Bottom line, small p-value → REJECT! Large t → REJECT!

I But remember, always look at the confidence interveal!
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Forecasting

The conditional forecasting problem: Given covariate Xf and

sample data {Xi ,Yi}ni=1, predict the “future” observation yf .

The solution is to use our LS fitted value: Ŷf = b0 + b1Xf .

This is the easy bit. The hard (and very important!) part of

forecasting is assessing uncertainty about our predictions.
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Forecasting

If we use Ŷf , our prediction error is

ef = Yf − Ŷf = Yf − b0 − b1Xf

= (β0 + β1Xf + ε)− (b0 + b1Xf )

= (β0 − b0) + (β1 − b1)Xf + ε
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Forecasting

The most commonly used approach is to assume that β0 ≈ b0,

β1 ≈ b1 and σ ≈ s... in this case, the error is just ε hence the 95%

plug-in prediction interval is:

b0 + b1Xf ± 2× s

It’s called “plug-in” because we just plug-in the estimates (b0, b1

and s) for the unknown parameters (β0, β1 and σ).
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Forecasting

Just remember that you are uncertain about b0 and b1! As a

practical matter if the confidence intervals are big you should be

careful!! Some statistical software will give you a larger (and

correct) predictive interval.

A large predictive error variance (high uncertainty) comes from

I Large s (i.e., large ε’s).

I Small n (not enough data).

I Small sx (not enough observed spread in covariates).

I Large difference between Xf and X̄ .
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Forecasting
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I Red lines: prediction intervals

I Green lines: “plug-in”prediction intervals
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House Data – one more time!

I R2 = 82%

I Great R2, we are happy using this model to predict house

prices, right?
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House Data – one more time!

I But, s = 14 leading to a predictive interval width of about

US$60,000!! How do you feel about the model now?

I As a practical matter, s is a much more relevant quantity than

R2. Once again, intervals are your friend!
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