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Decoupling Shrinkage and Selection in Bayesian
Linear Models: A Posterior Summary Perspective

P. Richard HAHN and Carlos M. CARVALHO

Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions
to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full
posterior distribution over regression coefficients into a sequence of sparse linear predictors.

KEY WORDS: Decision theory; Linear regression; Loss function; Model selection; Parsimony; Shrinkage prior; Sparsity; Variable
selection.

1. INTRODUCTION

This article revisits the venerable problem of variable selec-
tion in linear models. The vantage point throughout is Bayesian:
a normal likelihood is assumed and inferences are based on the
posterior distribution, which is arrived at by conditioning on
observed data.

In applied regression analysis, a “high-dimensional” linear
model can be one which involves tens or hundreds of variables,
especially when seeking to compute a full Bayesian posterior
distribution. Our review will be from the perspective of a data
analyst facing a problem in this “moderate” regime. Likewise,
we focus on the situation where the number of predictor vari-
ables, p, is fixed.

In contrast to other recent papers surveying the large body of
literature on Bayesian variable selection (Liang et al. 2008;
Bayarri et al. 2012) and shrinkage priors (O’Hara and Sil-
lanpää 2009; Polson and Scott 2012), our review focuses specif-
ically on the relationship between variable selection priors and
shrinkage priors. Selection priors and shrinkage priors are re-
lated both by the statistical ends they attempt to serve (e.g.,
strong regularization and efficient estimation) and also in the
technical means they use to achieve these goals (hierarchical
priors with local scale parameters). We also compare these
approaches on computational considerations.

Finally, we turn to variable selection as a problem of posterior
summarization. We argue that if variable selection is desired pri-
marily for parsimonious communication of linear trends in the
data, that this can be accomplished as a post-inference operation
irrespective of the choice of prior distribution. To this end, we
introduce a posterior variable selection summary, which distills
a full posterior distribution over regression coefficients into a
sequence of sparse linear predictors. In this sense “shrinkage”
is decoupled from “selection.”

We begin by describing the two most common approaches to
this scenario and show how the two approaches can be seen as
special cases of an encompassing formalism.

P. Richard Hahn is Assistant Professor, Booth School of Busi-
ness, The University of Chicago, Chicago, IL 60611 (E-mail:
richard.hahn@chicagobooth.edu). Carlos M. Carvalho is Associate Professor of
Statistics, McCombs School of Business, The University of Texas, 2110 Speed-
way Stop, Austin, TX 78712 (E-mail: carlos.carvalho@mccombs.utexas.edu).

1.1 Bayesian Model Selection Formalism

A now-canonical way to formalize variable selection in
Bayesian linear models is as follows. Let Mφ denote a normal
linear regression model indexed by a vector of binary indicators
φ = (φ1, . . . , φp) ∈ {0, 1}p signifying which predictors are in-
cluded in the regression. ModelMφ defines the data distribution
as

(Yi |Mφ, βφ, σ
2) ∼ N(Xφi βφ, σ

2), (1)

where Xφi represents the pφ-vector of predictors in model Mφ .
For notational simplicity, (1) does not include an intercept. Stan-
dard practice is to include an intercept term and to assign it a
uniform prior.

Given a sample Y = (Y1, . . . , Yn) and prior π (βφ, σ 2), the in-
ferential target is the set of posterior model probabilities defined
by

p(Mφ | Y) = p(Y | Mφ)p(Mφ)∑
φ p(Y | Mφ)p(Mφ)

, (2)

where p(Y | Mφ) = ∫
p(Y | Mφ, βφ, σ

2)π (βφ, σ 2)dβφdσ 2 is
the marginal likelihood of model Mφ and p(Mφ) is the prior
over models.

Posterior inferences concerning a quantity of interest � are
obtained via Bayesian model averaging (or BMA), which entails
integrating over the model space

p(� | Y) =
∑
φ

p(� | Mφ,Y)p(Mφ | Y). (3)

As an example, optimal predictions of future values of Ỹ under
squared-error loss are defined through

E(Ỹ | Y) ≡
∑
φ

E(Ỹ | Mφ,Y)p(Mφ | Y). (4)

An early reference adopting this formulation is Raftery, Madi-
gan, and Hoeting (1997); see also Clyde and George (2004).

Despite its straightforwardness, carrying out variable se-
lection in this framework demands attention to detail: priors
over model-specific parameters must be specified, priors over

© 2015 American Statistical Association
Journal of the American Statistical Association

March 2015, Vol. 110, No. 509, Reviews
DOI: 10.1080/01621459.2014.993077

435

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ex
as

 L
ib

ra
ri

es
] 

at
 1

4:
55

 2
3 

A
pr

il 
20

15
 

mailto:richard.hahn@chicagobooth.edu
mailto:carlos.carvalho@mccombs.utexas.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1080/01621459.2014.993077


436 Journal of the American Statistical Association, March 2015

models must be chosen, marginal likelihood calculations must
be performed and a 2p-dimensional discrete space must be ex-
plored. These concerns have animated Bayesian research in lin-
ear model variable selection for the past two decades (George
and McCulloch 1993, 1997; Clyde and George 2004; Hans, Do-
bra, and West 2007; Liang et al. 2008; Scott and Berger 2010;
Clyde, Ghosh, and Littman 2011; Bayarri et al. 2012).

Regarding model parameters, the consensus default prior
for model parameters is π (βφ, σ 2) = π (β | σ 2)π (σ 2) =
N(0, g�) × σ−1. The most widely studied choice of prior co-
variance is � = σ 2(Xt

φXφ)−1, referred to as “Zellner’s g-prior”
(Zellner 1986), a “g-type” prior or simply g-prior. Notice that
this choice of� dictates that the prior and likelihood are conju-
gate normal-inverse-gamma pairs (for a fixed value of g).

For reasons detailed by Liang et al. (2008), it is advised to
place a prior on g rather than use a fixed value. Several recent
papers describe priors p(g) that still lead to efficient computa-
tions of marginal likelihoods; see Cui and George (2008), Liang
et al. (2008), Maruyama and George (2011), and Bayarri et al.
(2012). Each of these papers (as well as the earlier literature
cited therein) study priors of the form

p(g) = a[ρφ(b + n)]agd

(g + b)−(a+c+d+1)1{g > ρφ(b + n) − b} (5)

with a > 0, b > 0, c > −1, and d > −1. Specific configura-
tions of these hyperparameters recommended in the literature in-
clude: {a = 1, b = 1, d = 0, ρφ = 1/(1 + n)} (Cui and George
2008), {a = 1/2, b = 1 (b = n), c = 0, d = 0, ρφ = 1/(1 +
n)} (Liang et al. 2008), and {a = 1, b = 1, c = −3/4, d = (n−
5)/2 − pφ/2 + 3/4, ρφ = 1/(1 + n)} (Maruyama and George
2011).

Bayarri et al. (2012) motivated the use of such priors from a
testing perspective, using a variety of formal desiderata based
on Jeffreys (1961) and Berger and Pericchi (2001), including
consistency criteria, predictive matching criteria and invariance
criteria. Their recommended prior uses {a = 1/2, b = 1, c =
0, d = 0, ρφ = 1/pφ}. This prior is termed the robust prior, in
the tradition following Strawderman (1971) and Berger (1980),
who examine the various senses in which such priors are “ro-
bust.” This prior will serve as a benchmark in the examples of
Section 3.

Regarding prior model probabilities, see Scott and Berger
(2010), who recommend a hierarchical prior of the form

φj
iid∼ Ber(q), q ∼ Unif(0, 1).

1.2 Shrinkage Regularization Priors

Although the formulation above provides a valuable theo-
retical framework, it does not necessarily represent an applied
statistician’s first choice. To assess which variables contribute
dominantly to trends in the data, the goal may be simply to
mitigate—rather than categorize—spurious correlations. Thus,
faced with many potentially irrelevant predictor variables, a
common first choice would be a powerful regularization prior.

Regularization—understood here as the intentional biasing of
an estimate to stabilize posterior inference—is inherent to most
Bayesian estimators via the use of proper prior distributions and
is one of the often-cited advantages of the Bayesian approach.
More specifically, regularization priors refer to priors explicitly

designed with a strong bias for the purpose of separating reliable
from spurious patterns in the data. In linear models, this strategy
takes the form of zero-centered priors with sharp modes and
simultaneously fat tails.

A well-studied class of priors fitting this description will
serve to connect continuous priors to the model selection priors
described above. Local scale mixture of normal distributions
are of the form (West 1987; Carvalho, Polson, and Scott 2010;
Griffin and Brown 2012)

π (βj | λ) =
∫

N
(
βj | 0, λ2λ2

j

)
π

(
λ2
j

)
dλj , (6)

where different priors are derived from different choices for
π (λ2

j ).
The last several years have seen tremendous interest in this

area, motivated by an analogy with penalized likelihood meth-
ods (Tibshirani 1996). Penalized likelihood methods with an
additive penalty term lead to estimating equations of the form∑

i

h(Yi,Xi , β) + αQ(β), (7)

where h and Q are positive functions and their sum is to be
minimized; α is a scalar tuning variable dictating the strength
of the penalty. Typically, h is interpreted as a negative log-
likelihood, given data Y, and Q is a penalty term introduced
to stabilize maximum likelihood estimation. A common choice
is Q(β) = ||β||1, which yields sparse optimal solutions β∗ and
admits fast computation (Tibshirani 1996); this choice underpins
the lasso estimator, an initialism for “least absolute shrinkage
and selection operator.”

Park and Casella (2008) and Hans (2009) “Bayesified” these
expressions by interpreting Q(β) as the negative log prior den-
sity and developing algorithms for sampling from the result-
ing Bayesian posterior, building upon work of earlier Bayesian
authors (Spiegelhalter 1977; West 1987; Pericchi and Walley
1991; Pericchi and Smith 1992). Specifically, an exponential
prior π (λ2

j ) = Exp(α2) leads to independent Laplace (double-
exponential) priors on the βj , mirroring expression (7).

This approach has two implications unique to the Bayesian
paradigm. First, it presented an opportunity to treat the global
scale parameter λ (equivalently the regularization penalty pa-
rameter α) as a hyperparameter to be estimated. Averaging over
λ in the Bayesian paradigm has been empirically observed to
give better prediction performance than cross-validated selec-
tion of α (e.g., Hans 2009). Second, a Bayesian approach ne-
cessitates forming point estimators from posterior distributions;
typically the posterior mean is adopted on the basis that it min-
imizes mean squared prediction error. Note that posterior mean
regression coefficient vectors from these models are nonsparse
with probability one. Ironically, the two main appeals of the pe-
nalized likelihood methods—efficient computation and sparse
solution vectorsβ∗—were lost in the migration to a Bayesian ap-
proach. See, however, Hans (2010) for an application of double-
exponential priors in the context of model selection.

Nonetheless, wide interest in “Bayesian lasso” models paved
the way for more general local shrinkage regularization pri-
ors of the form (6). In particular, Carvalho, Polson, and Scott
(2010) developed a prior over location parameters that attempts
to shrink irrelevant signals strongly toward zero while avoiding
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excessive shrinkage of relevant signals. To contextualize this
aim, recall that solutions to �1 penalized likelihood problems are
often interpreted as (convex) approximations to more challeng-
ing formulations based on �0 penalties: ||γ ||0 = ∑

j 1(γj �= 0).
As such, it was observed that the global �1 penalty “overshrinks”
what ought to be large magnitude coefficients. For one example,
the Carvalho, Polson, and Scott (2010) prior may be written as

π (βj | λ) = N
(
0, λ2λ2

j

)
,

λj
iid∼ C+(0, 1). (8)

with λ ∼ C+(0, 1) or λ ∼ C+(0, σ 2). The choice of half-Cauchy
arises from the insight that for scalar observations yj ∼ N(θj , 1)
and prior θj ∼ N(0, λ2

j ), the posterior mean of θj may be ex-
pressed:

E(θj | yj ) = {1 − E(κj | yj )}yj , (9)

where κj = 1/(1 + λ2
j ). The authors observe that U-shaped

Beta(1/2,1/2) distributions (like a horseshoe) on κj imply a prior
over θj with high mass around the origin but with polynomial
tails. That is, the “horseshoe” prior encodes the assumption that
some coefficients will be very large and many others will be
very nearly zero. This U-shaped prior on κj implies the half-
Cauchy prior density π (λj ). The implied marginal prior on β
has Cauchy-like tails and a pole at the origin which entails more
aggressive shrinkage than a Laplace prior.

Other choices of π (λj ) lead to different “shrinkage profiles”
on the “κ scale.” Polson and Scott (2012) provided an excel-
lent taxonomy of the various priors over β that can be obtained
as scale-mixtures of normals. The horseshoe and similar priors
(e.g., Griffin and Brown 2012) have proven empirically to be
fine default choices for regression coefficients: they lack hy-
perparameters, forcefully separate strong from weak predictors,
and exhibit robust predictive performance.

1.3 Model Selection Priors as Shrinkage Priors

It is possible to express model selection priors as shrinkage
priors. To motivate this reframing, observe that the posterior
mean regression coefficient vector is not well-defined in the
model selection framework. Using the model-averaging notion,
the posterior average β may be be defined as

E(β | Y) ≡
∑
φ

E(β | Mφ,Y)p(Mφ | Y), (10)

where E(βj | Mφ,Y) ≡ 0 whenever φj = 0. Without this def-
inition, the posterior expectation of βj is undefined in models
where the jth predictor does not appear. More specifically, as the
likelihood is constant in variable j in such models, the posterior
remains whatever the prior was chosen to be.

To fully resolve this indeterminacy, it is common to set
βj identically equal to zero in models where the jth predic-
tor does not appear, consistent with the interpretation that
βj ≡ ∂E(Y )/∂Xj . A hierarchical prior reflecting this choice
may be expressed as

π (β | g,�,�) = N(0, g���t ). (11)

In this expression, � ≡ diag((λ1, λ2, . . . , λp)) and � is a posi-
tive semidefinite matrix, both of which may depend on φ and/or
σ 2. When � is the identity matrix, one recovers (6).

To set βj = 0 when φj = 0, let λj ≡ φj sj for sj > 0, so that
when φj = 0, the prior variance of βj is set to zero (with prior
mean of zero). George and McCulloch (1997) developed this
approach in detail, including the g-prior specification, �(φ) =
σ 2(Xt

φXφ)−1. Priors over the sj induce a prior on �. Under
these definitions of the λj and�, the component-wise marginal
distribution for βj , j = 1, . . . , p, may be written as

π (βj | φj , σ 2, g, λj ) = (1 − φj )δ0 + φjN
(
0, gλ2

jωj
)
, (12)

where δ0 denotes a point mass distribution at zero and ωj is the
jth diagonal element of �. Hierarchical priors of this form are
sometimes called “spike-and-slab” priors (δ0 is the spike and
the continuous full-support distribution is the slab) or the “two-
groups model” for variable selection. References for this spec-
ification include Mitchell and Beauchamp (1988) and Geweke
(1996), among others.

It is also possible to think of the component-wise prior over
each βj directly in terms of (11) and a prior over λj (marginal-
izing over φ):

π (λj | q) = (1 − q)δ0 + qPλj , (13)

where Pr(φj = 1) = q, and Pλj is some continuous distribution
on R+. Of course, q can be given a prior distribution as well;
a uniform distribution is common. This representation transpar-
ently embeds model selection priors within the class of local
scale mixture of normal distributions. An important article ex-
ploring the connections between shrinkage priors and model
selection priors is Ishwaran and Rao (2005), who considered a
version of (11) via a specification of π (λj ) which is bimodal
with one peak at zero and one peak away from zero. In many
respects, this article anticipated the work of Park and Casella
(2008), Hans (2009), Carvalho, Polson, and Scott (2010), Griffin
and Brown (2012), Polson and Scott (2012), and the like.

1.4 Computational Issues in Variable Selection

Because posterior sampling is computation-intensive and be-
cause variable selection is most desirable in contexts with many
predictor variables, computational considerations are important
in motivating and evaluating the approaches above. The dis-
crete model selection approach and the continuous shrinkage
prior approach are both quite challenging in terms of posterior
sampling.

In the model selection setting, for p > 30, enumerating all
possible models (e.g., to compute marginal likelihoods) is be-
yond the reach of modern capability. As such, stochastic ex-
ploration of the model space is required, with the hope that the
unvisited models comprise a vanishingly small fraction of the
posterior probability. George and McCulloch (1997) were frank
about this limitation; noting that a Markov chain run of length
less than 2p steps cannot have visited each model even once,
they wrote hopefully that “it may thus be possible to identify at
least some of the high probability values.”

Garcia-Donato and Martinez-Beneito (2013) carefully
evaluated methods for dealing with this problem and came
to compelling conclusions in favor of some methods over
others. Their analysis is beyond the scope of this article,
but anyone interested in the variable selection problem in
large p settings should consult their advice. In broad strokes,
they found that MCMC approaches based on Gibbs samplers
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(i.e., George and McCulloch 1997) appear better at estimating
posterior quantities—such as the highest probability model, the
median probability model (MPM), etc.—compared to methods
based on sampling without replacement (i.e., Hans, Dobra, and
West 2007 and Clyde, Ghosh, and Littman 2011).

Regarding shrinkage priors, there is no systematic study in
the literature suggesting that the above computational problems
are alleviated for continuous parameters. In fact, the results
of Garcia-Donato and Martinez-Beneito (2013) (see Section 6)
suggest that posterior sampling in finite sample spaces is easier
than the corresponding problem for continuous parameters, in
that convergence to stationarity occurs more rapidly.

Moreover, if one is willing to entertain an extreme prior with
π (φ) = 0 for ||φ||0 > M for a given constant M, model selec-
tion priors offer a tremendous practical benefit: one never has to
invert a matrix larger thanM ×M , rather than thep × p dimen-
sional inversions required of a shrinkage prior approach. Simi-
larly, only vectors up to size M need to be saved in memory and
operated upon. In extremely large problems, with thousands of
variables, setting M = O(

√
p) or M = O(logp) saves consid-

erable computational effort (Hans, Dobra, and West 2007). Ac-
cording to personal communications with researchers at Google,
this approach is routinely applied to large-scale Internet data.
Should M be chosen too small, little can be said; if M truly
represents one’s computational budget, the best model of size
M will have to do.

1.5 Selection: From Posteriors to Sparsity

To go from a posterior distribution to a sparse point esti-
mate requires additional processing, regardless of what prior
is used. The specific process used to achieve sparse estimates
will depend on the underlying purpose for which the sparsity is
desired.

In some cases, identifying sparse models (subsets of nonzero
coefficients) might be an end in itself, as in the case of try-
ing to isolate scientifically important variables in the context of
a controlled experiment. In this case, a prior with point-mass
probabilities at the origin is necessary in terms of defining the
implicit (multiple) testing problem. For this purpose, the use of
posterior model probabilities is a well-established methodology
for evaluating evidence in the data in favor of various hypothe-
ses. Indeed, the highest posterior probability model (HPM) is
optimal under model selection loss:L(γ, φ) = 1(γ = φ), where
γ denotes the “action” of selecting a particular model. Under
symmetric variable selection loss, L(γ, φ) = ∑

j |γj − φj |, it is
easy to show that the optimal model is the one which includes
all and only variables with marginal posterior inclusion proba-
bilities greater than 1/2. This model is commonly referred to as
the median probability model (MPM).

Note that many authors discuss model selection in terms of
Bayes factors with respect to a “base model” Mφ∗ :

p(Mφ | Y)

p(Mφ∗ | Y)
= BF(Mφ,Mφ∗ )

p(Mφ)

p(Mφ∗ )
, (14)

where Mφ∗ is typically chosen to be the full model with no
zero coefficients or the null model with all zero coefficients.
This notation should not obscure the fact that posterior model
probabilities underlie subsequent model selection decisions.

As an alternative to posterior model probabilities, many ad-
hoc hard thresholding methods have been proposed, which
can be employed when π (λj ) has a non-point-mass density.
Such methods derive classification rules for selecting subsets of
nonzero coefficients, on the basis of the posterior distribution
over βj and/or λj . For example, Carvalho, Polson, and Scott
(2010) suggested setting to zero those coefficients for which

E(κj = 1/(1 + λ2
j ) | Y) < 1/2.

Ishwaran and Rao (2005) discussed a variety of posterior thresh-
olding rules and relate them to conventional thresholding rules
based on ordinary least-square estimates of β. An important
limitation of most commonly used thresholding approaches is
that they are applied separately to each coefficient, irrespec-
tive of any dependencies that arise in the posterior between the
elements of λ1, . . . , λp.

In other cases, the goal—rather than isolating all and only
relevant variables, no matter their absolute size—is simply to
describe the “important” relationships between predictors and
response. In this case, the model selection route is simply a
means to an end. From this perspective, a natural question is
how to fashion a sparse vector of regression coefficients which
parsimoniously characterizes the available data. Leamer (1978)
is a notable early effort advocating ad hoc model selection for
the purpose of human comprehensibility. Fouskakis and Draper
(2008), Fouskakis, Ntzoufras, and Draper (2009), and Draper
(2013) represent efforts to define variable importance in real-
world terms using subject matter considerations. A more generic
approach is to gauge predictive relevance (Gelfand, Dey, and
Chang 1992).

A widely cited result relating variable selection to predic-
tive accuracy is that of Barbieri and Berger (2004). Consider
mean squared prediction error (MSPE), n−1E{∑i(Ỹi − X̃i β̂)2},
and recall that the model-specific optimal regression vector is
β̂φ ≡ E(β | Mφ,Y). Barbieri and Berger (2004) showed that
for XtX diagonal, the best predicting model according to MSPE
is again the median probability model. Their result holds both
for a fixed design X̃ of prediction points or for stochastic pre-
dictors with E{X̃t X̃} diagonal. However, the main condition of
their theorem—XtX diagonal—is almost never satisfied in prac-
tice. Nonetheless, they argue that the median probability model
tends to outperform the highest probability model on out-of-
sample prediction tasks. Note that the HPM and MPM can be
substantially different models, especially in the case of strong
dependence among predictors.

Broadly speaking, the difference in the two situations de-
scribed above is one between “statistical significance” and
“practical significance.” In the former situation, posterior model
probabilities are the preferred alternative, with thresholding
rules being an imperfect analogue for use with continuous (non-
point-mass) priors on β. In the latter case, predictive relevance
is a commonly invoked operational definition of “practical,” but
theoretical results are not available for the case of correlated
predictor variables.

2. POSTERIOR SUMMARY VARIABLE SELECTION

In this section, we describe a posterior summary based on
an expected loss minimization problem. The loss function is
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designed to balance prediction ability (in the sense of mean
square prediction error) and narrative parsimony (in the sense
of sparsity). The new summary checks three important boxes:

• it produces sparse vectors of regression coefficients for
prediction,

• it can be applied to a posterior distribution arising from any
prior distribution, and

• it explicitly accounts for co-linearity in the matrix of pre-
diction points and dependencies in the posterior distribu-
tion of β.

2.1 The Cost of Measuring Irrelevant Variables

Suppose that collecting information on individual covariates
incurs some cost; thus the goal is to make an accurate enough
prediction subject to a penalty for acquiring predictively irrele-
vant facts.

Consider the problem of predicting an n-vector of future ob-
servables Ỹ ∼ N(X̃β, σ 2I) at a pre-specified set of design points
X̃. Assume that a posterior distribution over the model parame-
ters (β, σ 2) has been obtained via Bayesian conditioning, given
past data Y and design matrix X; denote the density of this
posterior by π (β, σ 2 | Y).

It is crucial to note that X̃ and X need not be the same. That
is, the locations in predictor space where one wants to predict
need not be the same points at which one has already observed
past data. For notational simplicity, we will write X instead of
X̃ in what follows. Of course, taking X̃ = X is a conventional
choice, but distinguishing between the two becomes important
in certain cases such as when p > n.

Define an optimal action as one which minimizes expected
loss E(L(Ỹ , γ )) over all model selection vectors γ , where the ex-
pectation is taken over the predictive distribution of unobserved
values:

f (Ỹ | Y) =
∫
f (Ỹ | β, σ 2)π (β, σ 2 | Y)d(β, σ 2). (15)

As a widely applicable loss function, consider

L(Ỹ , γ ) = λ||γ ||0 + n−1||Xγ − Ỹ ||22, (16)

where again ||γ ||0 = ∑
j 1(γj �= 0). This loss sums two com-

ponents, one of which is a “parsimony penalty” on the action
γ and the other of which is the squared prediction loss of the
linear predictor defined by γ . The scalar utility parameter λ
dictates how severely we penalize each of these two compo-
nents, relatively. Integrating over Ỹ conditional on (β, σ 2) (and
overloading the notation of L) gives

L(β, σ, γ ) ≡ E(L(Ỹ , γ )) = λ||γ ||0 + n−1||Xγ − Xβ||22 + σ 2.

(17)
Because (β, σ 2) are unknown, an additional integration over
π (β, σ 2 | Y) yields

L(γ ) ≡ E(L(β, σ, γ )) = λ||γ ||0 + σ̄ 2

+n−1tr(XtX�β) + n−1||Xβ̄ − Xγ ||22, (18)

where σ̄ 2 = E(σ 2), β̄ = E(β) and �β = cov(β), and all expec-
tations are with respect to the posterior.

Dropping constant terms, one arrives at the “decoupled
shrinkage and selection” (DSS) loss function:

L(γ ) = λ||γ ||0 + n−1||Xβ̄ − Xγ ||22. (19)

Optimization of the DSS loss function is a combinatorial
programming problem depending on the posterior distribution
via the posterior mean of β; the DSS loss function explicitly
trades off the number of variables in the linear predictor with its
resulting predictive performance. Denote this optimal solution
by

βλ ≡ arg minγ λ||γ ||0 + n−1||Xβ̄ − Xγ ||22. (20)

Note that the above derivation applies straightforwardly to
the selection prior setting via expression (10) or (equivalently)
via the hierarchical formulation in (12), which guarantee that β̄
is well-defined marginally across different models.

2.2 Analogy With High Posterior Density Regions

Although orthographically (19) resembles expressions used
in penalized likelihood methods, the better analogy is a Bayesian
highest posterior density (HPD) region, defined as the shortest
contiguous interval encompassing some fixed fraction of the
posterior mass. The insistence on reporting the shortest interval
is analogous to the DSS summary being defined in terms of
the sparsest linear predictor which still has reasonable predic-
tion performance. Like HPD regions, DSS summaries are well
defined under any prior giving a proper posterior.

To amplify, the DSS optimization problem is well-defined for
any posterior as long as β̄ exists. Different priors may lead to
very different posteriors, potentially with very different means.
However, regardless of the precise nature of the posterior (e.g.,
the presence of multimodality), β̄ is the optimal summary under
squared-error prediction loss, which entails that expression (20)
represents the sparsified solution to the optimization problem
given in (16).

An important implication of this analogy is the realization
that a DSS summary can be produced for a prior distribution
directly, in the same way that a prior distribution has an HPD
(with the posterior trivially equal to the prior). The DSS sum-
mary requires the user to specify a matrix of prediction points
X̃, but conditional on this choice one can extract sparse linear
predictors directly from a prior distribution.

In Section 3, we discuss strategies for using additional fea-
tures of the posterior π (β, σ 2 | Y) to guide the choice of
picking λ.

2.3 Computing and Approximating βλ

The counting penalty ||γ ||0 yields an intractable optimization
problem for even tens of variables (p ≈ 30). This problem has
been addressed in recent years by approximating the counting
norm with modifications of the �1 norm, ||γ ||1 = ∑

h |γh|, lead-
ing to a surrogate loss function which is convex and readily
minimized by a variety of software packages. Crucially, such
approximations still yield a sequence of sparse actions (the so-
lution path as a function of λ), simplifying the 2p dimensional
selection problem to a choice between at most p alternatives.
The goodness of these approximations is a natural and relevant
concern. Note, however, that the goodness of approximation is
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a computational rather than inferential concern. This is what is
meant by “decoupled” shrinkage and selection.

More specifically, recall that DSS requires finding the optimal
solution defined in (20). The most simplistic and yet widely
used approximation is to replace the �0 norm with the �1 norm,
which leads to a convex optimization problem for which many
implementations are available, in particular the lars algorithm
(Efron et al. 2004). Using this approximation,βλ can be obtained
simply by running the lars algorithm using Ȳ = Xβ̄ as the
“data.”

It is well-known that the �1 approximation may unduly
“shrink” all elements of βλ beyond the shrinkage arising nat-
urally from the prior over β. To avoid this potential “double-
shrinkage” it is possible to explicitly adjust the �1 approach
toward the desired �0 target. Specifically, the local linear ap-
proximation argument of Zou and Li (2008) and Lv and Fan
(2009) advises to solve a surrogate optimization problem (for
any wj near the corresponding �0 solution)

βλ ≡ arg minγ
∑
j

λ

|wj | |γj | + n−1||Xβ̄ − Xγ ||22. (21)

This approach yields a procedure analogous to the adaptive lasso
of Zou (2006) with Ȳ = Xβ̄ in place of Y. In what follows,
we use wj = β̄j (whereas the adaptive lasso uses the least-
squares estimate β̂j ). The lars package in R can then be used
to obtain solutions to this objective function by a straightforward
rescaling of the design matrix.

In our experience, this approximation successfully avoids
double-shrinkage. In fact, as illustrated in the U.S. crime ex-
ample below, this approach is able to un-shrink coefficients
depending on which variables are selected into the model.

For a fixed value of λ, expression (19) uniquely determines
a sparse vector βλ as its corresponding Bayes estimator. How-
ever, choosing λ to define this estimator is a nontrivial decision
in its own right. Section 3 considers how to use the posterior
distribution π (β, σ 2 | Y) to illuminate the trade-offs implicit in
the selection of a given value of λ.

3. SELECTION SUMMARY PLOTS

How should one think about the generalization error across
possible values of λ? Consider first two extreme cases. When
λ = 0, the solution to the DSS optimization problem is simply
the posterior mean: βλ=0 ≡ β̄. Conversely, for very large λ, the
optimal solution will be the zero vector, βλ=∞ = 0, which will
have expected prediction loss equal to the marginal variance of
the response Y (which will depend on the predictor points in
question).

A sensible way to judge the goodness of βλ in terms of pre-
diction is relative to the predictive performance of β—were it
known—which is the optimal linear predictor under squared-
error loss. The relevant scale for this comparison is dictated by
σ 2, which quantifies the best one can hope to do even if β were
known. With these benchmarks in mind, one wants to address
the question: how much predictive deterioration is a result of
sparsification?

The remainder of this section defines three plots that can be
used by a data analyst to visualize the predictive deterioration
across various values of λ. The first plot concerns a measure

of “variation-explained,” the second plot considers the excess
prediction loss on the scale of the response variable, and the
final plot looks at the magnitude of the elements of βλ.

In the following examples, the outcome variable and covari-
ates are centered and scaled to mean zero and unit variance.
This step is not strictly required, but it does facilitates default
prior specification. Likewise the solution to (19) is invariant to
scaling, but the approximation based on (21) is sensitive to the
scale of the predictors. Finally, although the exposition above
assumed no intercept, in the examples an intercept is always
fit; the intercept is given a flat prior and does not appear in the
formulation of the DSS loss function.

3.1 Variation-Explained of a Sparsified Linear Predictor

Define the “variation-explained” at design points X (perhaps
different than those seen in the data sample used to form the
posterior distribution) as

ρ2 = n−1||Xβ||2
n−1||Xβ||2 + σ 2

. (22)

Denote by

ρ2
λ = n−1||Xβ||2

n−1||Xβ||2 + σ 2 + n−1||Xβ − Xβλ||2 (23)

the analogous quantity for the sparsified linear predictor βλ.
The gap between βλ and β due to sparsification is tallied as a
contribution to the noise term, which decreases the variation-
explained. This quantity has the benefit of being directly com-
parable to the ubiquitousR2 metric of model fit familiar to users
of statistical software and least-squares theory.

Posterior samples of ρ2
λ can be obtained as follows.

1. First, solve (21) by applying the lars algorithm with in-
puts wj = β̄j and Y = Xβ̄. A single run of this algorithm
will produce a sequence of solutions βλ for a range of λ
values. (Obtaining draws of ρ2

λ using a model selection
prior requires posterior samples from (β, σ 2) marginally
across models.)

2. Second, for each element in the sequence of βλ’s, con-
vert posterior samples of (β, σ 2) into samples of ρ2

λ via
definition (23).

3. Finally, plot the expected value and 90% credible intervals
of ρ2

λ against the model size, ||βλ||λ. The posterior mean of
ρ2

0 may be overlaid as a horizontal line for benchmarking
purposes; note that even for λ = 0 (so that βλ=0 = β̄), the
corresponding variation-explained, ρ2

0 , will have a (non-
degenerate) posterior distribution induced by the posterior
distribution over (β, σ 2).

Variation-explained sparsity summary plots depict the poste-
rior uncertainty of ρ2

λ , thus, providing a measure of confidence
concerning the predictive goodness of the sparsified vector. In
these plots, one often observes that the sparsified variation-
explained does not deteriorate “statistically significantly” in the
sense that the credible interval for ρ2

λ overlaps the posterior
mean of the unsparsified variation-explained.
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3.2 Excess Error of a Sparsified Linear Predictor

Define the “excess error” of a sparsified linear predictor βλ
as

ψλ =
√
n−1||Xβλ − Xβ||2 + σ 2 − σ. (24)

This metric of model fit, while less widely used than variation-
explained, has the virtue of being on the same scale as the
response variable. Note that excess error attains a minimum of
zero precisely when βλ = β. As with the variation-explained,
the excess error is a random variable and so has a posterior
distribution. By plotting the mean and 90% credible intervals of
the excess error against model size (corresponding to increasing
values of λ), one can see at a glance the degree of predictive
deterioration incurred by sparsification. Samples of ψλ can be
obtained analogously to the procedure for producing samples of
ρ2
λ , but using (24) in place of (23).

3.3 Coefficient Magnitude Plot

In addition to the two previous plots, it is instructive to ex-
amine which variables remain in the model at different levels
of sparsification, which can be achieved simply by plotting the
magnitude of each element of βλ as λ (hence model size) varies.
However, using λ or ||βλ||0 for the horizontal axis can obscure
the real impact of the sparsification because the predictive im-
pact of sparsification is nonconstant. That is, the jump from a
model of size 7 to one of size 6, for example, may correspond
to a negligible predictive impact, while the jump from model
of size 3 to a model of size 2 could correspond to considerable
predictive deterioration. Plotting the magnitude of the elements
of βλ against the corresponding excess error ψλ gives the hori-
zontal axis a more interpretable scale.

3.4 A Heuristic for Reporting a Single Model

The three plots described above achieve a remarkable consol-
idation of information hidden within the posterior samples of
π (β, σ 2 | Y). They relate sparsification of a linear predictor to
the associated loss in predictive ability, while keeping the poste-
rior uncertainty in these quantities in clear view. Nonetheless, in
many situations one would like a procedure that yields a single
linear predictor.

For producing a single-model linear summary, we propose
the following heuristic: report the sparsified linear predictor
corresponding to the smallest model whose 90% ρ2

λ credible
interval contains E(ρ2

0 ). In words, we want the smallest linear
predictor whose predictive ability (practical significance) is not
statistically different than the full model’s.

Certainly, this approach requires choosing a credibility
level—there is nothing privileged about the 90% level rather
than say the 75% or 95%. However, this is true of alternative
methods such as hard thresholding or examination of marginal
inclusion probabilities, which both require similar conventional
choices to be determined. The DSS model selection heuristic of-
fer a crucial benefit over these approaches, though—it explicitly
includes a design matrix of predictors into its very formulation.
Standard thresholding rules and methods such as the median
probability model approach are instead defined on a one-by-one
basis, which does not explicitly account for colinearity in the
predictor space. (Recall that both the thresholding rules studied

in Ishwaran and Rao (2005) and the median probability theo-
rems of Barbieri and Berger (2004) restrict their analysis to the
orthogonal design situation.)

In the DSS approach to model selection, dependencies in the
predictor space appear both in the formation of the posterior and
also in the definition of the loss function. In this sense, while the
response vector Y is only “used once” in the formation of the
posterior, the design information may be “used twice,” both in
defining the posterior and also in defining the loss function. Note
that this is reasonable in the sense that the model is conditional
on X in the first place. Note also that the DSS loss function may
be based on a predictor matrix different than the one used in the
formation of the posterior.

Example: U.S. Crime Dataset (p = 15, n = 47)

The U.S. crime data of Vandaele (1978) appears in Raftery,
Madigan, and Hoeting (1997) and Clyde, Ghosh, and Littman
(2011) among others. The dataset consists of n = 47 obser-
vations on p = 15 predictors. As in earlier analyses we log
transform all continuous variables. We produce DSS selection
summary plots for three different priors: (i) the horseshoe prior,
(ii) the robust prior of Bayarri et al. (2012) with uniform model
probabilities, and (iii) a g-prior with g = n and model probabili-
ties as suggested in Scott and Berger (2006). Withp = 15 < 30,
we are able to evaluate marginal likelihoods for all models under
the model selection priors (ii) and (iii).

We use these particular priors not to endorse them, but merely
as representative examples of widely used specifications.

Figures 1 and 2 show the resulting DSS plots under each prior.
Notice that with this dataset the prior choice has an impact; the
resulting posteriors forρ2 are quite different. For example, under
the horseshoe prior we observe a significantly larger amount of
shrinkage, leading to a posterior for ρ2 that concentrates around
smaller values as compared to the results in Figure 2. Despite
this difference, a conservative reading of the plots would lead
to the same conclusion in either situation: the 7-variable model
is essentially equivalent (in both suggested metrics, ρ2 and ψ)
to the full model.

To use these plots to produce a single sparse linear predictor
for the purpose of data summary, we employ the heuristic de-
scribed in Section 3.4. Table 1 compares the resulting summary
to the model chosen according to the median probability model
criterion. Notably, the DSS heuristic yields the same 7-variable
model under all three choices of prior. In contrast, the HPM is
the full model, while the MPM gives either an 11-variable or
a 7-variable model depending on which prior is used. Both the
HPM and MPM under the robust prior choice would include
variables with low statistical and practical significance.

Notice also that the MPM under the robust prior contains four
variables with marginal inclusion probabilities near 1/2. The
precise numerics of these quantities is highly prior dependent
and sensitive to search methods when enumeration is not possi-
ble. Accordingly, the MPM model in this case is highly unstable.
By focusing on metrics more closely related to practical signifi-
cance, the DSS heuristic provides more stable selection, return-
ing the same 7-variable model under all prior specifications in
this example. As such, this dataset provides a clear example
of statistical significance—as evaluated by standard posterior
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Figure 1. U.S. crime data: DSS plots under the horseshoe prior.

quantities—overwhelming practical relevance. The summary
provided by a selection summary plot makes an explicit dis-
tinction between the two notions of relevance, providing a clear
sense of the predictive cost associated with dropping a predictor.

Finally, notice that there is no evidence of “double-
shrinkage.” That is, one might suppose that DSS penalizes
coefficients twice, once in the prior and again in the sparsifi-
cation process, leading to unwanted attenuation of large signals.
However, double-shrinkage would not occur if the �0 penalty
were being applied exactly, so any unwanted attenuation is
attributable to the imprecision of the surrogate optimization
in (21). In practice, we observe that the adaptive lasso-based
approximation exhibits minimal evidence of double-shrinkage.
Figure 3 displays the resulting values of βλ in the U.S. crime
example plotted against the posterior mean (under the horseshoe
prior). Notice that, moving from larger to smaller models, no
double-shrinkage is apparent. In fact, we observe reinflation or
“unshrinkage” of some coefficients as one progresses to smaller
models, as might be expected under the �0 norm.

Example: Diabetes Dataset (p = 10, n = 447)

The diabetes data was used to demonstrate the lars algo-
rithm in Efron et al. (2004). The data consist of p = 10 baseline
measurements on n = 442 diabetic patients; the response vari-

able is a numerical measurement of disease progression. As in
Efron et al. (2004), we work with centered and scaled predictor
and response variables. In this example we only used the robust
prior of Bayarri et al. (2012). The goal is to focus on the se-
quence in which the variables are included and to illustrate how
DSS provides an attractive alternative to the median probability
model.

Table 2 shows the variables included in each model in the
DSS path up to the 5-variable model. The DSS plots in this
example (omitted here) suggest that this should be the largest
model under consideration. The table also reports the median
probability model.

Notice that marginal inclusion probabilities do not necessarily
offer a good alternative to rank variable importance, particularly
in cases where the predictors are highly colinear. This is evident
in the current example in the “dilution” of inclusion probabil-
ities of the variables with the strongest dependencies in this
dataset: TC, LDL, HDL, TCH, and LTG. It is possible to see
the same effect in the rank of high probability models, as most
models on the top of the list represent distinct combinations of
correlated predictors. In the sequence of models from DSS, vari-
ables LTG and HDL are chosen as the representatives for this
group.

Meanwhile, a variable such as Sex appears with marginal
inclusion probability of 0.98, and yet its removal from DSS
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Figure 2. U.S. crime data: DSS plot under the “robust” prior of Bayarri et al. (2012) (top row) and under a g-prior with g = n (bottom row).
All 215 models were evaluated in this example.

(five-variable) leads to only a minor decrease in the model’s
predictive ability. Thus the diabetes data offer a clear example
where statistical significance can overwhelm practical relevance
if one looks only at standard Bayesian outputs. The summary
provided by DSS makes a distinction between the two notions
of relevance, providing a clear sense of the predictive cost asso-
ciated with dropping a predictor.

Example: Protein Activation Dataset (p = 88, n = 96)

The protein activity dataset is from Clyde, Ghosh, and
Littman (2011). This example differs from the previous ex-
ample in that with p = 88 predictors, the model space can no
longer be exhaustively enumerated. In addition, correlation be-
tween the potential predictors is as high as 0.99, with 17 pairs of
variables having correlations above 0.95. For this example, the
horseshoe prior and the robust prior are considered. To search
the model space, we use a conventional Gibbs sampling strategy
as in Garcia-Donato and Martinez-Beneito (2013, Appendix A),
based on George and McCulloch (1997).

Figure 4 shows the DSS plots under the two priors considered.
Once again, the horseshoe prior leads to smaller estimates of
ρ2. And once again, despite this difference, the DSS heuristic
returns the same six predictors under both priors. On this dataset,

the MPM under the Gibbs search (as well as the HPM and MPM
given by BAS) coincide with the DSS summary model.

Example: Protein Activation Dataset (p = 88, n = 80)

To explore the behavior of DSS in the p > n regime, we
modify the previous example by randomly selecting a subset of
n = 80 observations from the original dataset. These 80 obser-
vations are used to form our posterior distribution. To define the
DSS summary, we take X̃ to be the entire set of 96 predictor val-
ues. For simplicity we only use the robust model selection prior.
Figure 5 shows the results; with fewer observations, smaller
models do not give up as much in the ρ2 and ψ scales as the
original example. A conservative read of the DSS plots leads
to the same 6-variable model, however, in this limited informa-
tion situation, the models with 5 or 4 variables are competitive.
One important aspect of Figure 5 is that even working in the
p > n regime, DSS is able to evaluate the predictive perfor-
mance and provide a summary of models of any dimension up
to the full model. Because the robust prior was used, posterior
model probabilities are defined only for models of dimension
less than n− 1. Despite this, the DSS optimization problem is
well defined as long as the number of points in X is greater
than p. If the dataset itself has fewer than p unique points, one
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Table 1. Selected models by different methods in the U.S. crime example

DSS-HS DSS-Robust DSS-g-prior MPM(Robust) MPM(g-prior) HS(th) t-stat

M • • • 0.89 0.85 • •
So — — — 0.39 0.27 — —
Ed • • • 0.97 0.96 • •
Po1 • • • 0.71 0.68 • —
Po2 — — — 0.52 0.45 • —
LF — — — 0.36 0.22 — —
M.F — — — 0.38 0.24 — —
Pop — — — 0.51 0.40 — —
NW • • • 0.77 0.70 • •
U1 — — — 0.39 0.27 — —
U2 • • • 0.71 0.63 — •
GDP — — — 0.52 0.39 — —
Ineq • • • 0.99 0.99 • •
Prob • • • 0.91 0.88 • •
Time — — — 0.52 0.40 — —
R2

MLE 82.6% 82.6% 82.6% 85.4% 82.6% 80.0% 69.0%

NOTE: The MPM column displays marginal inclusion probabilities with the numbers in bold associated with the variables included in the median probability model. The HS(th)
column refers to the hard thresholding in Section 1.5 under the horseshoe prior. The t-stat column is the model defined by OLS p-values smaller that 0.05. The R2

mle row reports the
traditional in-sample percentage of variation-explained of the least-squares fit based on only the variables in a given column.

Figure 3. U.S. Crime data under the horseshoe prior: β̄ refers to the posterior mean while βDSS is the value of βλ under different values of λ
such that different number of variables are selected.
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Table 2. Selected models by DSS and model selection prior in the diabetes example

DSS-Robust(5) DSS-Robust(4) DSS-Robust(3) DSS-Robust(2) DSS-Robust(1) MPM(Robust) t-stat

Age — — — — — 0.08 —
Sex • — — — — 0.98 •
BMI • • • • • 0.99 •
MAP • • • — — 0.99 •
TC — — — — — 0.66 •
LDL — — — — — 0.46 —
HDL • • — — — 0.51 —
TCH — — — — — 0.26 —
LTG • • • • — 0.99 •
GLU — — — — — 0.13 —
R2

MLE 50.8% 49.2% 48.0% 45.9% 34.4% 51.3% 50.0%

NOTE: The MPM column displays marginal inclusion probabilities, and the numbers in bold are associated with the variables included in the median probability model. The t-stat
column is the model defined by OLS p-values smaller that 0.05. The R2

MLE row reports the traditional in-sample percentage of variation-explained of the least-squares fit based on only
the variables in a given column.

may specify additionally representative points at which to make
predictions.

DISCUSSION

A detailed examination of the previous literature reveals that
sparsity can play many roles in a statistical analysis—model
selection, strong regularization, and improved computation, for
example. A central, but often implicit, virtue of sparsity is that
human beings find fewer variables easier to think about.

When one desires sparse model summaries for improved com-
prehensibility, prior distributions are an unnatural vehicle for
furnishing this bias. Instead, we describe how to use a deci-
sion theoretical approach to induce sparse posterior model sum-
maries. Our new loss function resembles the popular penalized
likelihood objective function of the lasso estimator, but its in-
terpretation is very different. Instead of a regularizing tool for
estimation, our loss function is a posterior summarizer with an
explicit parsimony penalty. To our knowledge this is the first
such loss function to be proposed in this capacity. Conceptually,

Figure 4. Protein activation data: DSS plots under model selection priors (top row) and under shrinkage priors (bottom row).
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Figure 5. Protein activation data (p > n case): DSS plots under model selection priors.

its nearest forerunner would be HPD regions, which summarize
a posterior density while satisfying a compactness constraint.

Unlike hard thresholding rules, our selection summary plots
convey posterior uncertainty associated with the provided sparse
summaries. In particular, posterior correlation between the el-
ements of β impacts the posterior distribution of the sparsity
degradation metrics ρ2 and ψ . While the DSS summary plots
do not “automate” the problem of determining λ (and hence
βλ), they do manage to distill the posterior distribution into a
graphical summary that reflects the posterior uncertainty in the
predictive degradation due to sparsification. Furthermore, they
explicitly integrate information about the possibly nonorthog-
onal design space in ways that standard thresholding rules and
marginal probabilities do not.

As a summary device, these plots can be used in conjunction
with whichever prior distribution is most appropriate to the
applied problem under consideration. As such, they complement
recent advances in Bayesian variable selection and shrinkage
estimation and will benefit from future advances in these areas.

We demonstrate how to apply the summary selection concept
to logistic regression and Gaussian graphical models in a brief
appendix.

APPENDIX A: EXTENSIONS

A.1 Selection Summary in Logistic Regression

Selection summary can be applied outside the realm of normal linear
models as well. This section explicitly shows how to extend the ap-
proach to logistic regression and provides an illustration on real data.

Although one has many choices for judging predictive accuracy, it is
convenient to note that squared prediction loss is precisely the negative
log-likelihood in the normal linear model setting, which suggests the
following generalization of (16):

L(Ỹ , γ ) = λ||γ ||0 − n−1 log[f (Ỹ ,X, γ )], (A.1)

where f (Ỹ , γ ) denotes the likelihood of Ỹ with “parameters” γ .
In the case of a binary outcome vector using a logistic link function,

the generalized DSS loss becomes

L(Ỹ , γ ) = λ||γ ||0 + n−1
n∑
i=1

(ỸiXiγ − log (1 + exp (Xiγ ))). (A.2)

Taking expectations yields

L(Ỹ , π̄) = λ||γ ||0 + n−1
n∑
i=1

(π̄iXiγ − log (1 + exp (Xiγ ))), (A.3)

where π̄i is the posterior mean probability that Ỹi = 1. To help in-
terpret this formula, note that it can be rewritten as a weighted lo-
gistic regression as follows. For each observed Xi , associate a pair
of pseudo-responses Zi = 1 and Zi+n = 0 with weights wi = π̄i and
wi+n = 1 − π̄i respectively. Then π̄iXiγ − log (1 + exp (Xiγ )) may be
written as

[wiZiXiγ − wi log (1 + exp (Xiγ ))]

+[wi+nZi+nXiγ − wi+n log (1 + exp (Xiγ ))]. (A.4)

Thus, optimizing the DSS logistic regression loss is equivalent to find-
ing the penalized maximum likelihood of a weighted logistic regression
where each point in predictor space has a responseZi = 1, given weight
π̄i , and a counterpart response Zi = 0, given weight 1 − π̄i . The ob-
served data determines π̄i via the posterior distribution. As before, if
we replace (A.3) by the surrogate �1 norm

L(Ỹ , π̄) = λ||γ ||1 + n−1
n∑
i=1

(π̄iXiγ − log (1 + exp (Xiγ ))), (A.5)

then an optimal solution can be computed via the R package GLMNet
(Friedman, Hastie, and Tibshirani 2010).

The DSS summary selection plot may be adapted to logistic regres-
sion by defining the excess error as

ψλ =
√
n−1

∑
i

πi − 2πλ,iπi + π 2
λ,i −

√
n−1

∑
i

πi(1 − πi), (A.6)

where πi is the probability that ỹi = 1 given the true model parameters,
and πλ,i is the corresponding quantity under the λ-sparsified model.
This expression for the logistic excess error relates to the linear model
case in that each expression can be derived from

ψλ =
√
n−1E(||Ỹ − Ŷλ||2) −

√
n−1E(||Ỹ − E(Ỹ )||2), (A.7)

where the expectation is with respect to the predictive distribution
of Ỹ conditional on the model parameters, and Ŷλ denotes the opti-
mal λ-sparse prediction. In particular, Ŷλ ≡ Xβλ for the linear model
and ŷλ,i ≡ πλ,i = (1 + exp −Xiβλ)−1 for the logistic regression model.
One notable difference between the expressions for excess error under
the linear model and the logistic model is that the linear model has
constant variance whereas the variance term depends on the predictor
point in the logistic model as a result of the Bernoulli likelihood.
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Figure 6. DSS plots for the German credit data. For these data, each included variable seems to add an incremental amount, as the excess
error plot builds steadily until reaching the null model with no predictors.

Example: German Credit Data (n = 1000, p = 48)

To illustrate selection summary in the logistic regression context, we
use the German Credit data from the UCI repository, where n = 1000
and p = 48. In each record we have available covariates associated
with a loan applicant, such as credit history, checking account sta-
tus, car ownership and employment status. The outcome variable is a
judgment of whether or not the applicant has “good credit.” A natu-
ral objective when analyzing these data would be to develop a good
model for assessing creditworthiness of future applicants. A default
shrinkage prior over the regression coefficients is used, based on the
ideas described in Polson, Scott, and Windle (2013) and the associated
R package BayesLogit. The DSS selection summary plots (adapted
to a logistic regression) are displayed in Figure 6. The plot suggests
a high degree of “prevariable selection,” in that all of the predictor
variables appear to add an incremental amount of prediction accuracy,
with no single predictor appearing to dominate. Nonetheless, several of
the larger models (smaller than the full 48 variable model) do not give
up much in excess error, suggesting that a moderately reduced model
(≈ 35), may suffice in practice. Depending on the true costs associated
with measuring those ten least valuable covariates, relative to the cost
associated with an increase of 0.01 in excess error, this reduced model
may be preferable.

A.2 Selection Summary for Gaussian Graphical Models

Covariance estimation is yet another area where a sparsifying loss
function can be used to induce a parsimonious posterior summary.

Consider a (p × 1) vector (x1, x2, . . . , xp) = X ∼ N(0, �). Zeros in
the precision matrix� = �−1 imply conditional independence among
certain dimensions of X. As sparse precision matrices can be rep-
resented through a labelled graph, this modeling approach is often
referred to as Gaussian graphical modeling. Specifically, for a graph
G = (V,E), where V is the set of vertices and E is the set of edges,
let each edge represent a nonzero element of�. See Jones et al. (2005)
for a thorough overview. This problem is equivalent to finding a sparse
representation in p separate linear models for Xj |X−j , making the
selection summary approach developed above directly applicable.

As with linear models, one has the option of modeling the entries
in the precision matrix via shrinkage priors or via selection priors with
point masses at zero. Regardless of the specific choice of prior, sum-
marizing patterns of conditional independence favored in the posterior
distribution remains a major challenge.

A DSS parsimonious summary can be achieved via a multivariate
extension of (16) by once again leveraging the notion of “predictive
accuracy” as defined by the negative log-likelihood:

L(X̃,�) = λ||�||0 − log det(�) + tr(n−1X̃X̃′�), (A.8)

where � represents the decision variable for � and ||�||0 represents
the sum of nonzero entries in off-diagonal elements of �. Taking ex-
pectations with respect to the posterior predictive of X̃ yields

L(�) = E(L(X̃,�)) = λ||�||0 − log det(�) + tr(�̄�), (A.9)

where �̄ represents the posterior mean of �.
As before, an approximate solution to the DSS graphical model

posterior summary optimization problem can be obtained by employing
the surrogate �1 penalty

L(�) = E(L(X̃,�)) = λ||�||1 − log det(�) + tr(�̄�), (A.10)

as developed by penalized likelihood methods such as the graphical
lasso (Friedman, Hastie, and Tibshirani 2008).

[Received February 2014. Revised November 2014.]
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