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1. Introduction
Due to the complex patterns of consumption and the
limited storability of energy, many contracts in the
energy markets have been designed to allow flex-
ibility of delivery with respect to both the timing
and the amount of energy used. Under a regulated
environment, pricing such contracts has not been an
issue because prices were set by regulators under the
assumption of cost recovery, meaning that if the set
price turned out to favor either the producer or the
consumer, future prices were adjusted to compen-
sate for the over- or underpayment. With the transi-
tion to a deregulated environment such compensation
will no longer be possible, and contracts will need to
be priced according to their financial risks. Histori-
cally, the contracts that have allowed the most flexi-
bility, and consequently are the most complex, have
been known as “swing” or “take-or-pay,” and have
occasionally been called “variable volume” or “vari-
able take.” Providing their owner with flexibility-of-
delivery options, swings permit the option holder
to repeatedly exercise the right to receive greater or
smaller amounts of energy, subject to daily as well
as periodic (monthly or semiannual) constraints. Due
to their nonstandard nature, these options are indeed
“exotic,” but what renders them particularly interest-
ing is that they have a natural raison d’être in the

marketplace: They address the need to hedge in a
market subject to frequent, but not pervasive, price-
and demand-spiking behavior that is typically fol-
lowed by reversion to normal levels.1

In this paper, we develop a framework for the pric-
ing of swing options in the context of a one-factor,
seasonal, mean-reverting stochastic process for the
underlying commodity price, from the point of view
of a profit-maximizing agent. Such an agent is not
legally or physically precluded from selling excess
amounts he or she cannot consume. As a result, any
exercise amount is chosen solely for economic rea-
sons. We also calibrate the seasonal, mean-reverting

1 Consider, for example, a risk-averse economic agent who is short
of energy in a typical 22-business-days summer month. Such an
agent would be concerned with energy prices spiking on multiple
days in the month, should hot temperatures prevail. Full protection
can be attained by a strip of 22 daily European options, but that
constitutes excessive protection, as the likelihood of such numerous
hot days is small. Acquiring the option to exercise on 10 of those
22 days might be sufficient protection. The agent can buy 10 identi-
cal American options whose exercise period covers the 22-business-
days summer month. However, the agent would still overpay for
his/her desired protection. These American options have the same
optimal exercise time, but the agent, either not able to exercise all
the options on the same day (because of supply constraints) or not
willing to do so, would pay a premium it cannot recover. A swing
with 10 rights is the perfect hedging instrument.
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model for the stochastic process describing the under-
lying commodity price for the case of natural gas
using observed market prices for futures and options
contracts, we implement the numerical scheme for
pricing swing options, and we provide numerical
examples.
Descriptions of swing options, as well as other

options traded in the energy markets, have attracted
a lot of interest from participants in the energy mar-
kets. Joskow (1985) examines specific coal contracts
and shows that most have take-or-pay provisions.
Joskow (1987) looks at more general coal contracts
and notes that they usually include delivery sched-
ules with minimum and maximum production and
take obligations. Kaminski and Gibner (1995) pro-
vide descriptions of several exotic options traded in
the energy markets. Barbieri and Garman (1996) and
Garman and Barbieri (1997) focus on swing options
and describe several variants, but without discussing
how to value them in an efficient manner. Thompson
(1995) considers special cases of take-or-pay contracts
and, for these specific structures, extends a lattice-
based valuation approach introduced by Hull and
White (1993). Pilipovic and Wengler (1998) also dis-
cuss special cases of swing options that can be solved
with simple procedures. The main contribution of our
paper is to provide an efficient valuation framework
for the most general case of a swing option, as well as
to propose and calibrate a stochastic process appro-
priate for energy prices.
Swing options and their variants have a potentially

wide array of application. For example, a variant of
swing options, called a flexi-option, has been used in
interest rate risk management. Other applications of
swing options include the valuation of storage facili-
ties and the option to repeatedly shut down services.
Common options in supply chain management can
also be thought of as swing options. Anupindi and
Bassok (1999) discuss multiperiod supply contracts
with different degrees of flexibility under uncertain
demand that is independent and identically dis-
tributed across periods. The valuation framework we
present in this paper also applies in this situation, and
allows generalizations along the directions of state-
dependent demand uncertainty and restrictions in the
total quantities supplied over multiple periods.
This paper is organized as follows: Section 2 pro-

vides a definition of swing options, discusses several
of their properties, and introduces a dynamic pro-
gramming framework for their valuation. Section 3
describes a one-factor, seasonal, mean-reverting
model for the spot price of the underlying commod-
ity, introduces a pricing framework for futures and
European options on futures, and provides empirical
calibration results for the case of natural gas. Section 4
concentrates on the valuation of swing options

under the one-factor model, describes the numerical
scheme, and provides numerical examples. Section 5
concludes.

2. The Swing Options
2.1. Definitions
A swing contract is often bundled together with a
standard base-load forward contract that specifies,
for a given period and a predetermined price, the
amount of the commodity to be delivered over that
period. The swing portion allows flexibility in the
delivery amount around the amount of the base-load
contract.
There are many types of swing options, but they

all share a few common characteristics. If 0 is the
time when the contract is written, the option takes
effect during a period �T1�T2�, 0≤ T1 <T2. This period
usually coincides with the period for the base-load
contract. Within this period, the swing entitles the
owner to exercise up to N rights. These rights can
have different meanings leading to different variants
of swings. In all cases, a right can be exercised only
at a discrete set of dates ��1� 	 	 	 � �n� with T1 ≤ �1 <
�2 < · · ·< �n ≤ T2, with at most one right exercised on
any given date. Moreover, if a right is exercised on
a given date, there is a “refraction” time �tR, which
limits the next time a right can be exercised. If �tR ≤
min1≤j≤n−1��j+1−�j�, then this restriction is redundant;
otherwise, this refraction constraint would need to be
included in the contract.
The two main categories of contracts depend on the

duration of the effect associated with the exercise of
a right.
Local effect: The exercise of a right modifies the

delivery volume only on the date of exercise; i.e., the
delivery reverts to the level specified in the base-load
contract thereafter.
Global effect: The exercise of a right modifies the

delivery volume beginning on the exercise date—i.e.,
the delivery remains at the new level until the next
exercise, if any.
In the remainder of this paper we will concen-

trate on the first category of contracts. The pricing of
contracts in the second category is similar, but con-
tains enough different subtleties to warrant separate
treatment. From now on, when we refer to swing
contracts we refer to flexible contracts of the first
category.
As indicated before, there exist many different vari-

ants, depending on the exact specifications of the
rights. We assume that each right, if exercised on a
given date, allows the holder of the swing contract
to choose an incremental volume that may be posi-
tive or negative. When positive, the holder receives
an increased amount of the underlying commodity
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while, when negative, the holder delivers that amount
or, equivalently, decreases the base-load volume. In
addition, in case of an exercise at date �j , 1≤ j ≤ n,
physical constraints restrict the chosen incremental
volume to take values in the following intervals:

�l1j � l
2
j �∪ �l3j � l4j ��

where the bounds are specified in the contract and are
such that l1j ≤ l2j ≤ 0≤ l3j ≤ l4j .
The total volume delivered over �T1�T2� via the

swing contract is typically restricted between bounds
specified in the contract. Violation of this overall con-
straint might be allowed, but would lead to penal-
ties settled at expiration (either a one-time penalty or
a per-unit violation penalty). The penalty could be
predetermined at the initialization of the contract or
depend on the value of a random variable observable
at expiration T2 (such as the spot price at expiration,
or the maximum spot price over �T1�T2�, or the aver-
age spot price over this period).
All these various possibilities can be captured in

the contract by the specification of a general penalty
function �, where ��V � is the total penalty cost to be
paid by the holder of the contract at time T2 for a total
demand of V units over �T1�T2�. For example, for a
contract that specifies that the total volume delivered
by the swing needs to be in the interval �Min�Max�,
with a fixed penalty of C1 dollars if below Min, and
a per unit penalty of PT2 (the unit spot price of the
underlying commodity at time T2) if above Max, the
function � is defined by

��V �=



C1 if V <Min�

0 if Min≤ V ≤Max�
PT2�V −Max� if V >Max	

For another example, assume that the contract speci-
fies that the total volume delivered by the swing has
to be in the interval �Min�Max�, and that this is an
absolute constraint. Then, the function � would be
defined as

��V �=



� if V <Min�

0 if Min≤ V ≤Max�
� if V >Max	

To complete the description of the swing, one needs
to specify a “strike” price at which one unit of com-
modity will be exchanged at the time of the exercise
of a right. There are many possibilities: One could use
a predetermined strike price K, fixed at the initializa-
tion of the contract; or one could use a strike price
observable at a future date (e.g., the commodity spot
or T2-futures price at time T1); or variable strike prices
either known at the initialization of the contract or
observable at future dates.

2.2. Mathematical Description of the Standard
Swing Option

The main input parameters associated with a stan-
dard swing contract are:
• Time at which the contract is written and

priced: 0.
• Consumption interval: �T1�T2�.
• Possible exercise dates: ��1� 	 	 	 � �n� ∈ �T1�T2�.
• Number of rights: N ≤ n.
• Refraction period: �tR.
• Volume constraints at �j : �l1j � l

2
j � ∪ �l3j � l

4
j �, with

l1j ≤ l2j ≤ 0≤ l3j ≤ l4j .
• Penalty function, depending on the total demand

over �T1�T2�� �.
• Strike price K, or term structure of strike prices

Kt , t ∈ ��1� 	 	 	 � �n�.
For 1≤ j ≤ n, define the exercise decision variables

as follows:

�+
j =



1 if the holder of the swing contract

exercises for more volume on date �j ,

0 otherwise,

�−
j =



1 if the holder of the swing contract

exercises for less volume on date �j ,

0 otherwise,

and the corresponding volume decisions

V +
j =

{
incremental volume bought if �+

j = 1,
0 otherwise,

V −
j =

{
incremental volume sold if �−

j = 1,
0 otherwise.

The following set of equations provides a precise
mathematical description of the constraints associated
with a standard swing option:

0≤ �+
j +�−

j ≤ 1 for all 1≤ j ≤ n,

��+
i +�−

i �+ ��+
j +�−

j �≤ 1+
�j

�i +�tR

for all 1≤ i < j ≤ n,

0≤
n∑
i=j
��+

j +�−
j �≤N�

l3j �
+
j ≤ V +

j ≤ l4j �
+
j for all 1≤ j ≤ n,

l1j �
−
j ≤ V −

j ≤ l2j �
−
j for all 1≤ j ≤ n.

2.3. Properties of Swing Options
There are several properties of swing options inde-
pendent of the stochastic model for the price of the
underlying commodity. Let us first focus on a simple
standard swing contract.
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2.3.1. A Simple Swing Contract. Following the
specifications of §2.2, consider a simple case with
N rights, each giving the option of buying one extra
unit of commodity at strike price K, with no overall
constraints on the total number of extra units bought
over �T1�T2�.
1. For N = 1 (one exercise right), the value of the

swing option equals that of a conventional American-
style call option (more precisely a Bermudan option
because of the restriction of the exercise space to a set
of discrete dates).
2. An upper bound to the value of the swing option

with N exercise rights is given by N identical Bermu-
dan options. While the Bermudan options could (and
optimally would) be exercised simultaneously, the
swing option permits the exercise of only one right
on each exercise date and imposes a refraction period
as well.
3. A lower bound to the value of the swing option

is given by the maximum value of a strip of N
European options covering the same length of time
and amount, where the maximum is taken over all
possible sets of N distinct exercise dates. This lower
bound corresponds to the best set of predetermined
exercise dates, whereas the swing’s exercise dates
cover the entire time range.
4. For the case where N = n, i.e., when the number

of rights is equal to the number of exercise dates, the
value of the swing option is equal to the value of a
strip of European options.
5. Without any penalty for overall consumption,

the swing will be exercised in “bang-bang” fashion,
i.e., either at the highest or lowest level allowed by
the local constraint.

2.3.2. General Properties. The properties dis-
cussed above for the case of the simple swing do not
hold in general. When the penalty function is nonzero,
there is no obvious correspondence between the value
of European or American/Bermudan options and the
value of the swing. Moreover, it is no longer necessar-
ily true that swings are exercised in bang-bang fash-
ion. However, the following properties hold:
1. Under the assumption that the stochastic process

for the price of the underlying commodity exhibits
constant returns to scale, and that the penalties are
of the unit type,2 the value of the swing option is
homogeneous of degree one in prices and penalties:

f �cPt� cK� c��= cf �Pt�K���� c > 0�

where f is the value of the swing. To show this, note
that the value is obviously homogeneous when one

2 Under unit penalties, either a fixed amount per unit, or an amount
that is linear with respect to the final underlying commodity price,
is paid for each unit in excess of, or deficient to, the overall limits.

uses the same exercise policy under both scales. The
result then follows from the fact that one can use the
same optimal exercise policies under both scales.
2. The value of the option is homogeneous of

degree one in quantities:

f �c ·min� c ·max� c ·Max� c ·Min�
= cf �min�max�Max�Min�� c > 0	

The argument for the validity of this property is quite
similar to the one given in Property 1. One simply
has to argue that an optimal exercise policy under one
scale can be rescaled to become an optimal exercise
policy under the other scale.
These two general properties significantly reduce

the computations for swing prices, as one can work
in one scale of prices and quantities and imply swing
prices for all other scales.

2.4. Valuing Swing Options via Dynamic
Programming

The complexities of swing options—specifically, the
constraints explained in §2.2—require a modification
of the dynamic programming techniques used to
price American-style options. Whereas an American
option can be exercised only once, a swing option has
multiple exercise rights, and it also has constraints
on total volume delivered. Apart from the under-
lying spot price, the following two state variables
are necessary to price a swing: number of exercise
rights left and usage level so far. Assuming appro-
priate discretization of the usage-level variable, swing
options can be priced through a binomial/trinomial
forest—a multiple-layer tree extension of the tradi-
tional binomial/trinomial tree dynamic programming
approach.3

The intuition behind the valuation of swings is as
follows. The procedure starts from the option’s expi-
ration date and works backward in time to value
the instrument using “backward induction” in three
dimensions: Price, Number of Exercise Rights Left,
and Usage Level.4 At each date the possibility of an
exercise is considered by taking the maximum value
over staying in the current tree, i.e., not exercising a
swing right, or jumping down to the tree with the

3 In option pricing, dynamic programming with additional state
variables has been used in the case of pricing American lookback
options (Hull and White 1993), “shout” options (Cheuk and Vorst
1997), as well as swings with the number of possible exercise dates
equal to the number of exercise rights (Thompson 1995).
4 The Price “dimension” may be represented by more than one state
variable. Such a situation arises, for example, when the price pro-
cess depends on multiple random factors. While the case with mul-
tiple random factors is conceptually similar to the one we discuss,
the computational burden increases with the additional random
factors.
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Figure 1 Connection Between the Level with k+1 Exercise Rights Left
and the Level with k Exercise Rights Left in the Swing Forest

Total amount used  L

Exercise 2 Exercise 1

Pricing a swing, multiple exercise rights, multiple exercise levels

Total amount used  L+1

Total amount used L+2

k Exercise rights left

k+1 Exercise rights left No exercise

next lower number of exercises left and appropri-
ate usage level. If k rights of the swing have been
exercised, then the exercise of an additional right for
an amount A would leave the swing holder with
the value of the immediate exercise plus a forward
starting swing, after the refraction period �tR, with
k+ 1 rights exercised (or N − k− 1 rights left) and an
amount already used augmented by A. The concept
is described graphically in Figure 1.5

To numerically price a swing option, we discretize
the usage amount delivered in each possible exer-
cise date.6 Assuming that the owner of the swing
can only choose among, at most, L different usage
amounts each time a swing right is exercised, where
the amount used is one of L consecutive integer mul-
tiples of a minimum usage amount, the number of
possible usage levels after exercising k swing rights
is k × �L − 1� + 1. For each possible combination of
rights left and usage level, we construct a tree based
on the stochastic process for the price of the underly-
ing asset. The total number of trees necessary to price
a swing with N exercise rights is then given by:

total number of trees =
N∑
k=0

�k�L− 1�+ 1�

= �L− 1��N + 1��N + 2�
2

≈ N 2L

2
�

5 The figure implicitly assumes that the refraction period equals
the period between possible exercise dates. To deal with situations
where the refraction period is greater, one would need to introduce
an additional state variable that keeps track of the time left until
the option holder is allowed to exercise another swing right.
6 The discretization does not imply that that the optimal exercise
amount is limited to the discrete amounts prescribed by the step-
size in the discretization scheme. One could interpolate among the
swing values for different usage levels to calculate the optimal exer-
cise amount.

where ≈ signifies the asymptotic limit for large values
of N�L. If for each possible exercise date the number
of nodes associated with the underlying spot price is
less than or equal to J , each tree has no more than
n× J decision nodes, where n is the number of pos-
sible exercise dates. At each decision node we need
to compare the value of the swing under all pos-
sible decisions, i.e., the L possible exercise amounts
plus the possibility of not exercising, by computing
expected values in respective trees. The total num-
ber of computations of expected values is then equal
to the number of trees times the number of decision
nodes per tree times the number of comparisons per
decision node, and is ≈nJN 2L2/2.
The computer memory necessary if one wants to

keep in memory all the trees is, at most, a multiple
of the number of trees times the number of decision
nodes, which is ≈nJN 2L/2. However, there are con-
siderable savings possible, because only two levels
corresponding to different numbers of exercise rights
left need to be in memory at any time. This reduces
the memory requirements to ≈2nJNL. Further savings
in computer memory are possible with the caveat that
more computations may be necessary.
In the appendix, we discuss the convergence of the

swing price as the time interval between nodes tends
to zero.

3. A One-Factor Model for
Energy Prices

Before presenting numerical examples of pricing
swing options, we offer a model for natural gas prices
that we calibrate to data. The model describes the
behavior of an underlying spot price Pt through a
one-factor mean-reverting stochastic process, and is
an extension of models discussed in Schwartz (1997)
and Schwartz and Smith (2000).7 We formulate the
stochastic process directly under a given market-
defined martingale probability measure Q. This mea-
sure is such that all tradable instruments, such as
futures, forwards and options, have prices that are
described by stochastic processes that, when dis-
counted, are martingales under Q. We do not assume
that the spot price Pt corresponds to a tradable instru-
ment (nor do we assume that it is observable), so

7 See also the works of Pilipovic (1997), Barz (1998), and Deng (1999,
2000). Manoliu and Tompaidis (2002) provide an extension to a
multifactor model for energy prices. While for spot electricity prices
a one-factor mean-reverting model may be inadequate due to the
existence of large in magnitude and short in duration price spikes, a
one-factor mean-reverting diffusion model is plausible for the price
of monthly futures contracts for natural gas. We also point out that
for our dataset, discussed in §3.3, there are very small differences
in the performance of calibrated one-factor and two-factor models,
due to the lack of long-term options data.
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its discounted price process will not necessarily be
a martingale under Q. Nevertheless, in an abuse of
notation, we will refer to Q as the risk-neutral mea-
sure in the remainder of this paper.
The intuition behind having a nontradable spot

instrument lies in the limited storability of energy. An
amount of natural gas or electricity delivered at one
time is not equivalent to the same amount delivered
at another time. Absence of asset substitution across
time appears in other commodities as well, and has
been modeled in the literature by a derived quan-
tity, the “convenience yield,” as discussed in Gibson
and Schwartz (1990). We do not introduce a conve-
nience yield, but it is easy to see that the process for
the underlying spot price could be transformed into
a martingale under Q with the addition of a conve-
nience yield term. This possibility suggests that con-
venience yields can be understood in terms of limited
asset substitution across time.

3.1. Formulation
Let Pt denote the spot price at time t. An example for
Pt is the value of a unit of energy delivered a fixed
time after time t, e.g., the following hour or day.
We describe Pt by the product of a deterministic

seasonality factor ft and a random factor describing
the deseasonalized spot price Dt :

Pt = ftDt	 (1)

The period of the seasonal pattern in the spot price
can be set to unity without loss of generality; i.e.,
ft+1 = ft . To avoid redundancy we impose a normal-
ization condition ∫ 1

0
ln ft dt = 0	 (2)

We assume that the logarithm of the deseasonalized
spot price Xt = lnDt reverts to a long-term average
level ', according to an Ornstein-Uhlenbeck process:

dXt = (�'−Xt�dt+)X dZt� (3)

where �Zt�t is a standard Brownian motion under the
risk-neutral measure Q	 The mean-reversion rate (
and instantaneous volatility )X are assumed constant.
Given information at time 0, the random variable

Xt is normally distributed under the risk-neutral mea-
sure with mean

EQ�Xt �X0�= e−(tX0+ '�1− e−(t�

and variance

VarQ�Xt �X0�= �1− e−2(t�
)2X
2(

	

Accordingly, the deseasonalized spot price and the
spot price are lognormally distributed with mean

EQ�Dt �X0�=exp
{
EQ�Xt �X0�+ 1

2VarQ�Xt �X0�
}

=exp
{
e−(tX0+'�1−e−(t�+ 1

2 �1−e−2(t�
)2X
2(

}
�

EQ�Pt �X0�=ftEQ�Dt �X0�	
3.2. Valuation of Futures and Options on Futures
Under the assumption that interest rates depend
deterministically on time, futures prices are equal to
forward prices, and denoting by F �t� T � the price at
time t for a forward contract that matures at time T ,
we have

F �t� T �= EQ�PT ��t� for t ≤ T � (4)

where �t represents all the information available up
to time t. Under the one-factor model we have

ln�F �t� T �� = ln�EQ�PT ��t��

= ln fT +EQ�XT ��t�+ 1
2VarQ�XT ��t�

= ln fT + e−(�T−t�Xt + '�1− e−(�T−t��

+ )2X
4(

�1− e−2(�T−t��	 (5)

Using Equations (3) and (5) and applying Itô’s lemma,
the futures price follows the stochastic process8

dF �t� T �= F �t� T �)Xe
−(�T−t� dZt	 (6)

From Equations (4) and (6), it is clear that the futures
price F �t� T � is a martingale under the risk-neutral
measure Q.
To value European options on futures, we can

exploit the fact that the futures price F �t� T � is
lognormally distributed. The price C0, at time 0, of a
European call with expiration at time t and strike K
on a futures contract that matures at time T is given
by Black’s formula:

C0 = e−rtEQ��F �t� T �−K�+ ��0�
= e−rt�F �0�T �N �d�−KN�d−)1�t� T ����

8 The simplest way to derive Equation (6) is the following: From
Equations (3) and (5) we have

d ln F �t� T � = (e−(�T−t�Xt dt+ e−(�T−t� dXt − '(e−(�T−t� dt

− ) 2X
2
e−2(�T−t� dt

= e−(�T−t�)X dZt −
) 2X
2
e−2(�T−t� dt	

On the other hand, postulating Equation (6) for dF , we have

d ln F = dF

F
− �dF �2

2F 2
= e−(�T−t�)X dZt −

) 2X
2
e−2(�T−t� dt	
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where N is the cumulative standard normal distribu-
tion, and d is given by

d= ln�F �0�T �/K�
)1�t� T �

+ 1
2)1�t� T �� (7)

where

)21 �t� T � = VarQ�ln F �t� T � ��0�

= e−2(�T−t��1− e−2(t�
)2X
2(

	 (8)

The annualized implied volatility is given by
)1�t� T �/

√
t. The implied volatility tends to zero as

t−1/2 as the time to the expiration of the option
increases. The intuition behind the decline of the
implied volatility is that, in the long term, the mean
reversion dominates and the volatility tends to the
volatility of the mean level ', which in our one-factor
model is zero.9

3.3. Empirical Calibration
We have obtained futures prices and implied volatili-
ties for options on futures on natural gas. Our dataset
covers the period from 9/2/97 to 9/4/98, and was
obtained from the Bloomberg service. For each trad-
ing date, we have the futures prices for delivery of
natural gas for the following 36 months. Delivery of
natural gas takes place at Henry Hub throughout the
delivery month at the price at which the futures con-
tract settles on its last trading day, i.e., the third-to-
last business day before the beginning of the delivery
month. Prices are quoted in $/MMBTU (dollars per
million British Thermal Units). The dataset also con-
tains the implied volatility for the options on the fol-
lowing month’s futures contract (the option of the
shortest expiration).
To calibrate the one-factor model to the natural

gas price, we assumed that P represents the futures
price for delivery of gas over the next month, start-
ing in three business days.10 For the functional form
of the seasonality factor f , we use a function that is
piecewise constant with 12 different values, one for
each month of the year. The normalization condition,
Equation (2), was imposed on the values of the sea-
sonality factor

12∑
i=1
ln�fi/12�= 0	 (9)

9 This decline of the long-term implied volatility is a major draw-
back of a one-factor model, and indicates that the model would be
inappropriate for pricing long-term options.
10 The price P can be thought of as the one-month commodity swap
price exchanged for the (random) daily spot price of natural gas.
Ignoring intramonth discounting, P is the risk-neutral expectation
of the average natural gas spot price for the month. The definition
implies that P is observable only one day per month.

The parameters that were calibrated include the 12
values for the seasonality factor, the volatility )X , the
mean-reversion rate (, the long-term level ', and the
initial value of the deseasonalized spot price X0	 An
additional constraint was imposed on the calibrated
short-term volatility by setting it equal to the implied
volatility

)2implied = �1− e−2(t�
)2X
2(t

� (10)

where t is the time to the expiration of the option.
The objective function that was minimized under con-
straints (9) and (10) was the sum of the absolute dif-
ference between the calibrated and the actual futures
prices over all the available maturity dates.
The calibration was performed for every Monday

and Friday in the dataset and 103 sets of calibrated
parameters were obtained. Empirical results are sum-
marized in Table 1 and illustrated in Figure 2.
The in-sample error of the calibration is quantified

by the average error per futures contract, which, over
the whole sample, was 1.95 cents (a little less than
1%), while the biggest average error on any date was
3.8 cents per futures contract, and the smallest aver-
age error was 0.5 cents per contract.
The fluctuation of the calibrated parameters across

these 103 dates provides an estimate for the out-
of-sample performance of the calibrated model.
Overall, the long-term average for the deseasonalized
futures’ natural gas price was approximately $2.31 per
MMBTU, and 95% of the observations were between
$2.21 and $2.40 per MMBTU. The volatility )X fluc-
tuated throughout the year, indicating an additional
seasonal pattern with rapid mean reversion, which
we did not account for. The mean-reversion rate was
the hardest to estimate, due to the absence of reli-
able long-term implied volatilities in our dataset. The
seasonality factor was remarkably stable, varying less
than 1.5% throughout the period. The main mode of

Table 1 Parameter Values for Natural Gas Prices

Parameter Average value Standard deviation

Long-term log level ��� 0�802 0�028
Mean-reversion rate ��� 3�4 2�1
Volatility ��X � 59% 14%
Long-term average ��+ � 2

X /4�� 0�836 0�021
January factor 1�107 0�011
February factor 1�061 0�013
March factor 1�010 0�0049
April factor 0�9628 0�0058
May factor 0�9526 0�0067
June factor 0�9528 0�0065
July factor 0�9564 0�0064
August factor 0�9593 0�0044
September factor 0�9623 0�0046
October factor 0�9731 0�0062
November factor 1�029 0�0095
December factor 1�092 0�0078
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Figure 2 Comparison Between the Forward and the Calibrated
Forward Curve on 4/3/98
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Notes. The average error per futures contract was 1.8 cents. The apparent
downward drift in the figure is due to the initially high spot price, which,
according to Equation (3) reverts to the long-term spot price level.

change of the seasonality factor appears to be a steep-
ening (flattening) mode that makes the December,
January, and February contracts more expensive rel-
ative to the summer contracts. We note that the val-
ues of the calibrated parameters are consistent with
the values estimated in Manoliu and Tompaidis (2002)
using Kalman filtering.

4. Numerical Method for Pricing
Energy Derivatives

4.1. Tree-Building Procedure
Hull and White (1994) develop a procedure for build-
ing trinomial trees that can be adjusted to approx-
imate the stochastic process for the deseasonalized
spot price, D, starting from the stochastic process for
its logarithm, X = lnD:

dXt =−(�Xt − '�dt+)X dZt	

There are two stages in the construction.
The first stage is to build a trinomial tree for the

process �X∗
t �t satisfying

dX∗
t =−(X∗

t dt+)X∗ dZt

with X∗
0 = 0 and )X∗ = )X . In an abuse of notation

we will use X∗ to describe the generic tree variable
associated with the stochastic process �X∗

t �t . The tree
is symmetric around the value X∗ = 0, and the nodes
are evenly spaced in t and X∗ at intervals of lengths
/t and /X∗, where /t is the length of each time step
and /X∗ is taken to be )X∗

√
3/t. Denote by �i� j�

the node for which t = i /t and X∗ = j /X∗. If the
three branches emanating from �i� j� are referred to

as “upper/middle/lower,” then one of the following
forms of branching is allowed to emanate from �i� j�,
depending on the value of j :
(a) “up one/straight along/down one” (standard

form);
(b) “up two/up one/straight along”;
(c) “straight along/down one/down two.”
The latter two (nonstandard) forms are used to

incorporate mean reversion when the spot price is
very low or very high.
Let pu, pm, and pd denote the probabilities along the

upper, middle, and lower branches. For each of the
branching forms (a), (b), and (c), these can be calcu-
lated by noting that the variable X∗

t+/t−X∗
t is normally

distributed, with expected value equal to −(X∗
t /t

and variance )2X∗ /t (neglecting terms of order higher
than /t). Let x= (j /t.
If the branching at node �i� j� is of the form (a), the

probabilities are

pu = 1
6 +

x�x− 1�
2

� pm = 2
3 − x2� pd = 1

6 +
x�x+ 1�
2

	

If the branching is of the form (b), the probabilities
are

pu = 1
6 +

x�x+ 1�
2

� pm =− 1
3 − x�x+ 2��

pd = 7
6 +

x�x+ 3�
2

	

Finally, for form (c), the probabilities are

pu = 7
6 +

x�x− 3�
2

� pm =− 1
3 − x�x− 2��

pd = 1
6 +

x�x− 1�
2

	

To keep these probabilities positive, it is required
that the maximum value J of the absolute value of the
integers �j� used in the tree be between 0	184/�(/t�
and 0	577/�(/t�. For simplicity, we set J to be the
smallest integer greater than 0	184/�(/t�. Thus, for
each i the tree will have nodes �i� j� with −ni ≤ j ≤ ni,
where ni =min�i� J �. For most of the nodes, namely
for �i� j� with �j�< J , the branching used is of the stan-
dard form (a). It switches to nonstandard ones when
j =±J , namely, to form (b) when j =−J and to form
(c) when j = J .11

The second stage in the construction of a tree for
the logarithm of the deseasonalized spot price Xt is
to displace the nodes �i� j� at time t = i /t by a cer-
tain amount ai, to incorporate the drift. Essentially,

11 There are alternative ways to determine the maximum value of J .
For example, one can check whether standard branching of form
(a) would lead to “probabilities” that are greater than 1 or less
than 0, in which case one can switch to the nonstandard types of
branching.
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the shifts ai are determined so that the deseasonalized
forward prices calculated by the numerical algorithm
match the initial deseasonalized forward curve.12 The
tree for X has the same transition probabilities as
the tree for X∗, but the branches are “shifted” in the
new tree.
To define the shifts ai, we first define auxiliary vari-

ables Bi� j for each node �i� j�. Let B0�0 = 1. For each j ,
−ni+1 ≤ j ≤ ni+1, define

Bi+1� j =
∑
k

Bi�kbi+1� j �k��

where bi+1� j �k� is the probability of moving from node
�i� k� to node �i+ 1� j�. Its value is set to zero if node
�i+ 1� j� is not connected to node �i� k�. The auxiliary
variable Bi� j corresponds to the probability that node
�i� j� will be reached.
Once Bi� j have been defined, ai is given by

Fi/fi = EQ�Pi/fi�= EQ�Di�=
ni∑

j=−ni
Bi� je

X∗
i� j+ai �

where Fi is the forward price with maturity date i /t,
fi is the seasonal index for the maturity date i /t, and
Fi/fi is the deseasonalized forward price. Hence, we
can express ai as

ai = ln
(
Fi
fi

)
− ln

( ni∑
j=−ni

Bi� je
X∗
i� j

)
	

In Figures 3–5 we illustrate, through a numerical
example, the construction of the trinomial trees. The
time /t between the nodes is one month, and the
current time is the last day that the October for-
ward contract is traded. The spot price corresponds
to the forward price of the contract maturing today.
The term structures of forward prices and seasonal-
ity factors are given in Table 2. The long-term mean-
reversion level ' is 0.8, the mean-reversion rate (= 3,
and the volatility )∗

X = 60%.
The increments in the X∗ direction are /X∗ = 0	3,

and in the time direction /t = 1/12 = 0	0833. The
biggest integer J is J = 1. The tree for the probabilities
Bi� j of reaching node �i� j� are shown in Figure 3.
The tree for X∗ is shown in Figure 4. To match the
forward prices, we adjust the values on the X∗ tree
by the quantities a0 = 0	8995� a1 = 0	8608� a2 = 0	8377,
and a3 = 0	8186. We note that the option payoff can be
calculated from the deseasonalized spot price, rather
than from the seasonal spot price, using the relation-
ship Pt = ftDt . Note that this transformation reduces
the problem to one where the underlying stochastic
process is continuous, but where the option payoff
depends on the seasonality factor that corresponds to
the exercise time.

12 The initial deseasonalized forward curve is defined as Ft/ft ,
where Ft is the initial forward price for time t and ft the seasonality
factor.

Figure 3 The Probabilities Bi� j for Reaching Node �i� j� in a Four-
Month Trinomial Tree for Natural Gas Prices
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Figure 4 The First Stage in Building a Four-Month Trinomial Tree for
the Price of Natural Gas with Mean Reversion
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Figure 5 Trinomial Tree for the Deseasonalized Spot Price D = exp�X �
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Table 2 Term Structures of Forward Prices and
Seasonality Factors

Forward price Seasonality
Month (per MMBTU) factor

October $2.36 0.96
November $2.45 1.02
December $2.58 1.09
January $2.59 1.11

4.2. A Numerical Example for Pricing
a Swing Option

In this example, we consider a simplified swing
option where we have four exercise dates but can
exercise at most two swing rights; each exercise
permits the purchase of either one or two MMBTUs.
Exercise can occur at the last day of the month that
the following month’s forward contract is traded. To
value such an option, envisage three trinomial trees—
one each for: no exercise rights left; one exercise
right left; and two exercise rights left—layered one
above the other. The interest rate is 5% per year, and
the other parameters are the same as in the exam-
ple presented in the previous section. The logarithm
of the deseasonalized spot price tree is shown in
Figure 5.
We consider two swing price structures:
(a) The strike is fixed at $2.40 per MMBTU.

Figure 6 A Four-Month Trinomial Forest for Pricing a Swing with Two Rights Left
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Notes. Fixed strike price of $2.40 per MMBTU. No penalties, maximum amount bought at each exercise: Two MMBTU.

(b) The strike is set at-the-money-forward; i.e., for
delivery in October it is set at $2.36, for delivery in
November at $2.45, for delivery in December at $2.58,
and for delivery in January at $2.59.
Figure 6 values the swing with the fixed strike and

includes:
1. The bottom level shows the swing payoffs with

zero rights left. The zeros in the figure are attributable
to the absence of possible actions to be taken at the
zero level, and the absence of penalties.
2. The midlevel shows the tree when one right has

been exercised and two MMBTUs bought. In this tree,
the value for the top node in the second month is
calculated by

1	72 = max{2·�1	02·3	20−2	40�+0�
�0	83·2	00+0	10·0	49+0	07 ·0	16�e−0	05/12}

= max{2·�3	26−2	40��1	71}=max�1	72�1	71��
which shows that it is optimal to exercise the remain-
ing swing at that node for the maximum possible
amount of two MMBTUs rather than wait. The value
3	26= 1	02 ·3	20 is obtained by multiplying the desea-
sonalized spot price by the seasonality factor for
November.
3. Finally, the top level values the swing with two

exercise rights left, in each node taking the greater of:
(a) Exercise now+ risk-neutral expected present

value of value in the tree below;
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Figure 7 A Four-Month Trinomial Forest for Pricing a Swing with Two Rights Left
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Notes. Strike set at-the-money forward. No penalties, maximum amount bought at each exercise: Two MMBTU.

(b) Defer exercise and take expected present
value of next three nodes in the same tree.
In this tree, then, the value 3.43, on the top node

for the second month, is obtained by

3	43=max{2·�1	02·3	20−2	40�
+ �0	83·2	00+0	10·0	49+0	07 ·0	16�e−0	05/12�
�0	83·3	68+0	10·0	73+0	07 ·0	16�e−0	05/12}

=max�3	43�3	12�	
Working backward, the value of the swing option is
$1.39. Expressed as a percentage of the spot natural
gas price (the one corresponding to the October for-
ward contract), the value of the swing is 59%.
Note that due to the mean reversion in the spot

price, swing rights are exercised early for large devi-
ations from the forward price. To compare with the
upper and lower bounds, the value of a three month
Bermudan option that can be exercised monthly for
up to two units is worth $0.79 (33% of the unit spot
price), which is the same as the price at the root node
of the tree with one right left to exercise. The value
of the European options expiring in one, two, and
three months are $0.30 (13%), $0.63 (27%), and $0.71
(30%), respectively. Therefore, the lower bound for the

swing price is $1.34 (57%) and the upper bound is
$1.58 (66%).
The calculations for the swing with the strike set at-

the-money-forward are shown in Figure 7. The value
of the swing is $1.01 (43%), while the value of the
Bermudan option is $0.62 (26%), and the values of
the European options expiring in one, two, and three
months are $0.27 (11%), $0.42 (18%), and $0.50 (21%),
respectively. The lower bound in this case is $0.92
(39%) and the upper bound is $1.24 (52%).
We also examined the interesting issue of whether

there exists a unique optimal threshold value for the
early exercise of call options in the environment con-
sidered in our paper: Geometric Brownian Motion
versus mean reversion, and alternating fixed and
variable seasonality factors and exercise prices; i.e.,
whether, if it is optimal to exercise a swing right
for S∗, it is also optimal to exercise such a right for
all S ≥ S∗. While in general we do not have such
results, and indeed multiple optimal thresholds can
be demonstrated for certain parameter values, sea-
sonality factors, and exercise prices, we are able to
demonstrate a single threshold in the case of:
1. Geometric Brownian Motion.
2. Mean reversion when the mean-reversion rate is

“sufficiently” large.
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Finally, we were unable to demonstrate a violation of
single threshold when the strike prices are the same.13

5. Concluding Remarks
In this paper, we have presented and tested a gen-
eral valuation framework of a common and important
form of options found in the energy sector—swing
options, which permit their holders to buy or sell
energy subject to both daily and periodic limits.
The valuation methodology is based on the use of
multilayered trinomial trees, which both discretizes
the stochastic process and permits the valuation of
an option requiring multiple decision variables. To
ground the results firmly in both theory and empirical
applicability, this paper has also proposed and tested
a one-factor mean-reverting process for energy prices
that explicitly incorporates seasonal effects.
This paper has concentrated on the case of a

profit-maximizing agent whose specific consumption
needs are irrelevant. However, many end users of
swing options could be legally or technically pre-
cluded from selling excess amounts they cannot
consume. In that situation, the exercise amount is
constrained by the option holder’s ability and need
to consume energy. Often the daily needed quantity
is itself unpredictable and, very frequently, weather-
related.14 Under such conditions, the pricing and
hedging framework would need to be extended once
an adequate market measure is chosen. This choice
is intimately linked to the possibility of hedging the
“private” quantity uncertainty of the buyer, for exam-
ple by using weather derivatives. While the techniques
developed in this paper can still be useful, the overall
pricing and hedging framework faces the same con-
ceptual difficulties encountered in real options valua-
tion and hedging, for which both private and public
risks are present.
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Appendix. Convergence of the Numerical
Algorithm
We note that the stochastic process for the logarithm

of the deseasonalized spot price follows a mean-reverting
Ornstein-Uhlenbeck stochastic process. The numerical algo-
rithm presented in §4.1 corresponds exactly to the trinomial
tree construction proposed by Hull and White (1994), where
the logarithm of the deseasonalized spot price plays the
role of the short-term interest rate, and where the desea-
sonalized spot price plays the role of a discount bond. The
weak convergence of this numerical algorithm has been
established for the case of European options by Lesne et al.
(2000). We note that the results of Lesne et al. do not directly
apply to approximations to the seasonal spot price, due to
the discontinuity of the seasonality factor. However, they do
apply to approximations to the deseasonalized spot price,
a useful fact which we take advantage of as explained
below.
We use induction to establish weak convergence for

swing options with multiple exercise rights. Starting with
the option with no exercise rights left, and for any usage
level, we have that the value is equal to the discounted
expected value of the terminal date penalty corresponding
to the usage level. By the Lesne et al. (2000) result, the
value computed by the numerical approximation converges
to the continuous time value as /t→ 0. Next, we consider
the value for the swing with one exercise right left. On the
first-to-last exercise date before expiration, the option value
is the greater of the value obtained by immediate exercise
for an allowed usage amount and that obtained by the dis-
counted expected value of the terminal payoff if the option
is not exercised (note that the time between exercise dates is
finite). By the Lesne et al. (2000) result, we have that the dis-
counted expected value of the terminal payoff computed by
the numerical approximation converges to the continuous-
time discounted expected value. The value of immediate
exercise, on the other hand, is equal to the amount received
from exercise plus the discounted expected value of a swing
option with no exercise rights left, and, thus, converges
to the continuous time value. Because the maximum func-
tion is continuous with respect to its arguments, the value
computed by the numerical approximation converges to the
continuous time value. By induction, the numerical approx-
imation converges for earlier exercise dates, as well as for
multiple swing rights.
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