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Abstract. We present theoretical arguments (based on infinite dimensional bifur-
cation theory) and numerical evidence (based on non-perturbative methods) that the
boundaries of analyticity of invariant curves can be described as an accumulation of
branch points, which are typically of order 2. We show how this fact would explain pre-
vious numerical results of several authors and how it suggests more efficient numerical
algorithms, which we implement.
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Invariant curves have been very important in the development of dynamical systems
because they organize the long term behavior. A considerable amount of numerical work
has been performed recently trying to understand the phenomena that happen when
they disappear.

In previous numerical investigations the breakdown of invariant curves has been
attributed to the presence of a natural boundary in their analyticity domain (see [BC],
[BCCF], [FL], [LT]). In [BM] complex rotation numbers were introduced and an unex-
pected structure of the analyticity domain was numerically observed. This paper sheds
light on the nature of the singularities of invariant curves for standard-like maps seen as
analytic functions of a perturbation parameter. We present a mechanism, supported by
theoretical arguments and numerical evidence, that can explain the numerical results
from the previous studies. We expect that the results would be typical for many systems
in which breakdown of K.A.M curves occur.

Standard-like maps are area-preserving twist maps given by:

(X.1) pn+1 = pn + εS(qn), qn+1 = qn + pn+1 (mod 2π)

where S(q) is an odd trigonometric polynomial in q. For S(q) = sin(q) this reduces to
the standard map, for which numerous studies exist ([Ch], [Au], [Gr]). Standard-like
maps are not only canonical examples of twist maps but have also appeared as models
of several phenomena in different areas of physics, ranging from plasma to solid state
physics.

To study invariant curves we will find it more convenient to use the second order
“Lagrangian” recurrence:

(X.2) qn+1 − 2qn + qn−1 = εS(qn).

We will study an invariant curve of rotation number ω that can be parameterized in
terms of a parameter θ :

(X.3) qn = θn + u(θn; ε, ω)

requiring that θn+1 = θn + ω, mod2π. The function u, called the hull function in [Au],
conjugates the dynamics of the standard-like map to a rigid rotation with rotation
number ω. If an invariant curve for (X.2) parameterized by u, exists :

(X.4) ∆ω[u](θ)− εS(θ + u(θ; ε, ω)) = 0
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where ∆ω[u](θ) = u(θ + ω; ε, ω)− 2u(θ; ε, ω) + u(θ − ω; ε, ω).

The Poincaré-Lindstedt perturbation method consists in expanding u in series in
ε, θ :

(X.5) u(θ; ε, ω) =
∞∑

n=1

∞∑
k=−∞

ûn,kεneikθ

and matching coefficients by order in ε and the Fourier mode.

For ω real, Diophantine (i.e. ω that satisfies |qω − p| ≥ C|q|−r, for C > 0, r >

2, p, q ∈ ZZ), using methods from KAM theory [CC] showed that there exists a solution
to (X.4) for ε sufficiently small. The solution is unique under the condition

∫
udθ = 0. To

regularize the convergence for the series (X.5) Berretti and Marmi (see [BM]) introduced
rotation numbers with nonzero imaginary part – an effect somewhat similar to adding
dissipation to the system. When Im ω 6= 0 a simple argument based on the majorant
method shows that u is analytic in θ in a neighborhood of zero in the ε plane. The
existence and the critical behavior of the invariant curve when ω is real are determined
by the behavior of the singularities of the solution to (X.4) as Im ω → 0.

The singularity structure of the analyticity domain in ε of u(θ; ε, ω) for Im ω 6= 0,
can be determined using bifurcation theory. We will view (X.4) as an equation in the
space of continuous functions (of the variable θ) with zero average (denoted henceforth
as C0

0 ) and introduce the operator Tω : C0
0 → C0

0 , where :

(X.6) Tω[u](θ) = ε∆−1
ω S(θ + u(θ; ε, ω)).

Then (X.4) is reduced to a fixed point problem for Tω in C0
0 . It is easy to see that the

operator DTω[u] is compact in this infinite dimensional space (it maps bounded sets into
pre-compact ones). A well known theorem about the spectrum of compact operators
states that all the eigenvalues of DTω are isolated with finite multiplicity apart from an
eigenvalue at zero (see [Ru]). A simple bifurcation occurs for values ε0 of ε such that
DTω[u] has a simple eigenvalue 1 and :

(X.7)
∫

v(θ)∆−1
ω

[
S(θ + u(θ; ε0, ω))

]
dθ 6= 0

(X.8)
∫

v(θ)∆−1
ω

[
S′′(θ + u(θ; ε0, ω))v2(θ)

]
dθ 6= 0

3



where v(θ) is a null vector for DTω[u(θ; ε0, ω)]− I at ε = ε0 :

(X.9)
[
I − ε0∆

−1
ω S′(θ + u(θ; ε0, ω))

]
v = 0, v 6= 0

(see [GS], [ChH]). At such a value ε0, u considered as a function of ε, exhibits branch
points of order 2. We note that, as usual in bifurcation theory, this is the expected
behavior for a typical function. If S were to depend on extra parameters, we expect
that bifurcation points of order 3 will appear in a set of co-dimension 2 in parameter
space.

We anticipate that points that satisfy the above conditions are located throughout
the ε complex plane. Some of the branch points of the analyticity domain seem to form,
at Im ω = 0, ω Diophantine, a natural boundary, as reported in [BC], [LF]. To form this
natural boundary, we expect some of the branch points to move, as Imω → 0, towards
the origin with a “speed” depending on their position (the further from the origin the
faster they move).

The topology of the Riemann sheets can be very complicated. One expects, and
our numerical results indicate, that there are branch points that exist on some Riemann
sheets but not on others (see figure 2). This phenomenon requires further study but we
will not concern with it here.

The bifurcation theory analysis also predicts that if ε0 is a bifurcation point for Tω

then −ε0 is also a bifurcation point since u(θ;−ε0, ω) = u(θ − π; ε0, ω) is a solution of
(X.4) for ε = −ε0 and the conditions (X.7), (X.8) are – verified to be – satisfied. This
prediction can be used to test the accuracy of the numerical methods.

To study numerically the behavior of the solution to (X.4), we continued the solu-
tion between points along a path encircling a branch point (how a branch point can be
located will be discussed later) using a non-perturbative (Newton) method. Given the
solution of (X.4) at ε0, u(θ; ε0, ω) = uε0

(θ) we write for u(θ; ε, ω) = uε0
(θ) + η(θ) :

(X.10) ∆ω[uε0
](θ)− εS(θ + uε0

(θ)) = R(θ)

or, ignoring terms of order η2:

(X.11). ∆ω[η](θ)− (ε− ε0)Su(θ + uε0
(θ))η(θ) = −R(θ)
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The existence of a solution for (X.11) for |ε− ε0| small, Im ω 6= 0 and ε not a bifurcation
point for Tω is guaranteed, based on an argument using the implicit function theorem
and the contraction mapping principle. To monitor the solution along the path we chose
to evaluate u at a fixed value of θ. The results are largely independent of the choice of
the observable (another choice could be the k-th Fourier coefficient of u). A problem
arises only when certain values of the observable impose an additional symmetry on
the problem (for example u(1/2; ε, ω) = 0 for all ε, ω). The fact that we can detect the
same singular behavior using different observables is very similar to detecting a phase
transition in physical phenomena with an underlying renormalization group structure,
through the behavior of different physical properties, e.g. thermal and electrical con-
ductivity. The results of our computations, following the solution of (X.4) at fixed
values of θ are shown in figures 1b, 2c, 3b, 4b. They are consistent with the theoretical
predictions (in figure 2 a second branch point appears on the second Riemann sheet,
close to the position of the original branch point on the first Riemann sheet. We were
able to construct a path that encloses only one branch point, depicted by Set 4 in figure
2b).

The existence of branch points of order 2 in the analyticity domain of u can be
detected by the positions of the poles and zeros of Padé approximants (Padé approx-
imants have also been used in many areas of Physics to identify singular behavior –
for an overview and details see [BGM]). According to a – not yet proven in general
but supported by numerical experiments and proven in particular cases – conjecture of
John Nuttall, high order diagonal Padé approximants to functions with a finite num-
ber of branch points have most of their poles and zeros along arcs emanating from the
branch points. Other poles and zeros occur in nearby pairs (see [N1] for a proof for a
particular class of functions, and [N2] for the conjecture). Although u could have an
infinite number of branch points, due to numerical roundoff and truncation errors, only
the branch points closest to the origin (i.e a finite number) are numerically computable
using the series (X.5). Our computations confirm that for several standard-like maps,
for Im ω 6= 0, both the zeros and the poles of diagonal Padé approximants, computed for
a fixed θ, lie on arcs (for the case of the standard map [BM] reported a similar behavior
only for the poles of Padé approximants). The results of our computations are shown
in figures 1a, 2a, 2b, 3a, 4a. The neighborhoods of the points where the lines of poles
and zeros of the diagonal Padé approximants emanate from, were all found to include
one branch point of order 2 (using the non-perturbative continuation method).
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Knowledge of the structure of the singularities of the analyticity domain of the
series (X.5) allows for more efficient numerical algorithms for locating the singularities.
One possibility is based on the following observation (see also [BGM]): If f has an
isolated branch point of order 2 at x0, then for x close to x0, f ′(x) ≈ A(x−x0)−1/2 and
d
dx ln f ′(x) = f ′′/f ′ ≈ −0.5/(x−x0). So if a function f exhibits an isolated branch point
of order 2, then the derivative of the logarithm of f ′ exhibits a pole in the same position.
Similarly, if for some n ∈ ZZ, n ≥ 0, dn

dxn f(x) ≈ A(x−x0)γ , γ < 0 the Padé approximant
to d

dx ln f (n)(x) = f (n+1)(x)/f (n)(x) exhibits a pole at x = x0. Padé approximants
are much better suited to approximate functions with simple poles than with isolated
branch points.

An [N/M ] Padé approximant for f ′′/f ′ can be computed as follows. Let [N/M ](x)
= P (x)/Q(x) where P , Q are polynomials of order N, M respectively and Q(0) = 1.
Then

f ′′(x)
f ′(x)

=
P (x)
Q(x)

+ O(xN+M+1)

which is equivalent to, for Q(0) = 1, f ′(0) 6= 0

f ′′(x)Q(x) = f ′(x)P (x) + O(xN+M+1).

The coefficients of P,Q are determined by matching coefficients up to order xN+M .
Since this involves solving a linear system, condition numbers can be used to determine
the accuracy of the solution. We found that this algorithm gives much smaller condi-
tion numbers than the use of a straightforward diagonal Padé approximant. Moreover,
according to our conjecture, all the poles of the Padé approximant are singularities of
the function rather than being artifacts of the method, as in the case of straightforward
Padé approximants. Our results are shown in figures 1a, 2a, 2b, 3a, 4a. We also imple-
mented algorithms to compute Padé approximants for ratios of higher derivatives, but
we did not find a significant difference.

Finally, we have observed striking geometric properties for the analyticity domain
of the solution of (X.4) for rotation numbers with rational real part. This suggests an
underlying renormalization group explanation of the phenomenon. We are currently
carrying out investigations in that direction.

We would like to acknowledge discussions and correspondence with John Nuttall,
Armando Bazanni and Giorgio Turchetti. We also thank the referees for their careful
reading of the manuscript and their suggestions.
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2. Captions

Figure 1. (a) S(q) = sin q. ω = 0.2i. The poles and zeros of the Padé approximant
[14/14] for θ = 0.23 (Set 1) superimposed with the poles of the Padé approximant
for the derivative of the logarithm of u′ (Set 2) and the path used in the continuation
method (Set 3). (b) The values of the solution to (X.1) along the path depicted on figure
1a. Set 1 are the values through the first loop and Set 2 the values through the second
loop.

Figure 2. (a) Same as figure 1a. S(q) = sin q. ω =
√

5−1
2 +0.1i. Padé approximant

[48/48], θ = 0.23. (b) Detail of figure 2a. Sets 1-3 the same. The path depicted by set
3 encircles one branch point on the first Riemann sheet and a different branch point
that appears on the second Riemann sheet. Set 4 depicts a second path used for the
continuation method, encircling only one branch point. (c) The values of the solution
to (X.1) along the paths depicted on figure 2b. It takes three turns to come back to
the original solution for the path depicted by Set 3 in figures 2a,b. Set 1 are the values
through the first loop, Set 2 the values through the second loop and Set 3 the values
through the third loop along this path. It takes two turns to come back to the original
solution for the path depicted by Set 4 in figure 2b. Set 4 are the values through the
first loop and Set 5 through the second loop along this second path.

Figure 3. (a) Same as figure 1a. S(q) = sin q +sin 3q. ω = 2
3 +0.01i. Padé approx-

imant [28/28], θ = 0.23. (b) Same as figure 1b.

Figure 4. (a) Same as figure 1a. S(q) = sin q + sin 3q. ω =
√

5−1
2 + 0.1i. Padé

approximant [28/28], θ = 0.23. (b) Same as figure 1b.
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