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A. Notation

Temperature model

Tt : actual temperature on day t

T̄t : average temperature for the t-th day in the year

∆T
t : difference between actual and average temperatures on day t, ∆T

t = Tt − T̄t

ρT
1 : first order autocorrelation for temperature differences from the average temperature

ρT
2 : second order autocorrelation for temperature differences from the average temperature

σT
t : magnitude of temperature fluctuations on day t

σT
(0): fixed term of temperature fluctuations

σT
(1): magnitude of seasonal term of temperature fluctuations

φ: day during the year on which temperature fluctuations are greatest

Load vs. Temperature Model

Lt : load at time t

αL: load intercept

βL: marginal expected increase of load per one degree Fahrenheit increase in temperature

σL: magnitude of fluctuations in the load-temperature model

Load vs. Price Model

βS,l: Marginal increase in expected spot price per unit increase in load in the low demand

regime

αS,l: intercept for the load-price relationship in the low demand regime

βS,h: Marginal increase in expected spot price per unit increase in load in the high demand

regime
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αS,h: intercept for the load-price relationship in the high demand regime

σS: magnitude of fluctuations in the load-price relationship

Sb: supply level that marks the boundary between the low demand and the high demand

regimes.

Prices

Pt : spot electricity price at time t

pretail: fixed retail price, charged by the electricity retailer to its retail customers.

preduced: fixed retail price paid by customers that have signed a pay-in-advance interruptible

contract

pfine: fine per unit of interrupted load paid to the customers that have signed a pay-as-you-go

interruptible contract

pgeneration: unit cost per unit load available to the electricity retailer at a fixed price

Interruptible contracts

Ladvance, daily: maximum amount available for interruption under a pay-in-advance contract,

for one day

Ladvance, yearly: total amount available for interruption under a pay-in-advance contract for one

year

Ladvance, remaining: total amount available for interruption, under a pay-in-advance contract,

for the remaining period, Ladvance, remaining ≤ Ladvance, yearly

ladvance: interrupted load under a pay-in-advance contract, in a particular day, ladvance ≤

Ladvance, daily

Lunder contract: Total daily load of customers under a pay-in-advance interruptible contract

Lpago, daily: maximum amount available for interruption under a pay-as-you-go contract for

one day

2



Lpago, yearly: total amount available for interruption under a pay-as-you-go contract for one

year

Lpago, remaining: total amount available for interruption, under a pay-as-you-go contract, for

the remaining period, Lpago, remaining ≤ Lpago, yearly

lpago: interrupted load under a pay-as-you-go contract, in a particular day, lpago ≤ Lpago, daily

Lgeneration: power available to the electricity retailer at a fixed price.

Competition

n: number of identical electricity retailers serving the same area.

π(i): profit function for the ith retailer.

l(i): amount of load interrupted by the ith retailer.

L(i)
generation: power available to the ith retailer at a fixed price.

l̄: the total amount of load that can be interrupted in a single day by all the retailers.

Lgeneration: the total power available to all the electricity retailers at a fixed price.

B. Marginal Benefit of Interruption

In this appendix we calculate the marginal benefit from a unit of interruption in the case with

an unlimited annual volume of interruption remaining.
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From Equation (4) from the paper we have that the net profit from interrupting amounts

ladvance, lpago from the pay-in-advance and the pay-as-you-go interruptible contracts on day

t−1, is given by E(∆πt), where:

∆πt(Lt , pspot,t , ladvance, lpago)
16

=(Lt −Lunder contract− lpago)pretail

+(Lunder contract− ladvance)preduced

−Lgeneration pgeneration

− lpago pfine

− (Lt − ladvance− lpago−Lgeneration)pspot,t .

From this equation we have that the marginal cost of interrupting the pay-in-advance interru-

ptible contract is given by preduced, while the marginal cost of interrupting the pay-as-you-go

interruptible contract is given by pretail + pfine. The marginal benefit is the same for both types

of contracts, and is given by:

∂

∂l
E
(
(Lt − l−Lgeneration)pspot

)
.

To calculate the marginal benefit, we define the function:

Benefit(y) = E
(

pspot(y+βLσT εT +σLεL−Lgeneration)
)
,

where we have dropped the t subscript, set σT = σT
t , and where yt is the expected load on date

t, after interruption l,

yt = βL
(
T̄t + ∆̄

T
t
)
+αL− l,

where ∆̄T
t is the expected temperature deviation from the historical average temperature on

date t:

∆
T
t = E(∆T

t ) = ρ
T
1 ∆

T
t−1 +ρ

T
2 ∆

T
t−1.
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From Equations (2), (3) from the paper, we have that:

pspot =βS,l (y+βLσT εT +σLεL +σSεS)+αS,l

+Θ(y+βLσT εT +σLεL +σSεS−Sb)
[(

βS,h−βS,l
)
(y+βLσT εT +σLεL +σSεS)+αS,h−αS,l

]
,

where Θ is the step function, with Θ(x) = 0, if x ≤ 0, and Θ(x) = 1, if x > 0.

The benefit from interruption is then equal to:

Benefit(y) =(βS,ly+αS,l)(y−Lgeneration)+βS,l
(
β

2
L(σT )2 +σ

2
L
)

+E [Θ(y+βLσT εT +σLεL +σSεS−Sb)

×
((

βS,h−βS,l
)
(y+βLσLσT εT +σLεL +σSεS)+αS,h−αS,l

)
×
(
y+βLσT εT +σLεL−Lgeneration

)]
,

(1)

where we used that:

E
(
ε

2
T
)

= E(ε2
L) = 1,

E(εT εL) = E(εT εS) = E(εLεS) = 0.
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Calculating the expected value in Equation (1) above we have:

Benefit(y) =(βS,ly+αS,l)(y−Lgeneration)+βS,l
(
β

2
Lσ

2
T +σ

2
L
)

+
Z

∞

−∞

Z
∞

−∞

dεT dεL
e−

ε2
T +ε2

L
2

2π

Z
∞

−∞

dεS
e−

ε2
S
2

√
2π

×Θ(y+βLσT εT +σLεL +σSεS−Sb)

×
((

βS,h−βS,l
)
(y+βLσLσT εT +σLεL +σSεS)+αS,h−αS,l

)
×
(
y+βLσT εT +σLεL−Lgeneration

)
,

=(βS,ly+αS,l)(y−Lgeneration)+βS,l
(
β

2
Lσ

2
T +σ

2
L
)

+
Z

∞

−∞

Z
∞

−∞

dεT dεL
e−

ε2
T +ε2

L
2

2π

×
y+βLσT εT +σLεL−Lgeneration

2

×

√2
π

e
− (y+βLσT εT +σLεL−Sb)

2

2σ2
S (βS,h−βS,l)σS

+
(
αS,h−αS,l +(βS,h−βS,l)(y+βLσT εT +σLεL)

)
×
(

erf
(

y+βLσT εT +σLεL−Sb√
2σS

)
+1
)]

,

=
βS,h +βS,l

2
(
y(y−Lgeneration)+β

2
Lσ

2
T +σ

2
L
)
+

αS,h +αS,l

2
(
y−Lgeneration

)
+

(βS,h−βS,l)σ2
S
(
(y−Lgeneration)σ2

S +(Sb−Lgeneration)
(
β2

Lσ2
T +σ2

L
))

√
2π
(
σ2

S +σ2
L +β2

Lσ2
T
)3/2 e

− (y−Sb)2

2(σ2
S+σ2

L+β2
l σ2

T)

+
Z

∞

−∞

(y−Lgeneration + ε)
(
αS,h−αS,l +(βS,h−βS,l)(y+ ε)

)
2
√

β2
Lσ2

T +σ2
L

erf
(

y−Sb + ε√
2σS

)
e
− ε2

2(β2
Lσ2

T +σ2
L)

√
2π

dε.
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The last integral can be expressed in terms of the following functions:

f̄0(µ,σ) =
Z

∞

−∞

e−
x2
2

√
2π

erf(µ+σx)dx, f0(µ) = f̄0(µ,1),

f̄1(µ,σ) =
Z

∞

−∞

e−
x2
2

√
2π

x erf(µ+σx)dx, f1(µ) = f̄1(µ,1),

f̄2(µ,σ) =
Z

∞

−∞

e−
x2
2

√
2π

x2 erf(µ+σx)dx, f2(µ) = f̄2(µ,1)− f0(µ).

It can be shown that:

f̄0(µ,σ) = f0

(√
3
2

µ√
σ2 +1/2

)
,

f̄1(µ,σ) =

√
3
2

σ2√
σ2 +1/2

f1

(√
3
2

µ√
σ2 +1/2

)
,

f̄2(µ,σ) =
3
2

σ4

σ2 +1/2
f2

(√
3
2

µ√
σ2 +1/2

)
+(σ2 +1) f0

(√
3
2

µ√
σ2 +1/2

)
.

In Table 1 we approximate the functions f0, f1, f2 pointwise by rational functions of the

absolute value of the argument. The approximation is of the form

fi (x) =


∑

ni
j=0 ai

j|x|
j

∑
ni
j=0 bi

j|x|
j sign(x) , if |x|< 7

1, otherwise
, i = 0,1,2, n0 = 7,n1 = n2 = 8

The coefficients were chosen using the MiniMaxApproximation function in Mathematica and

were found to be pointwise accurate with an error smaller than 10−7.
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Combining all the previous formulas, we have:

Benefit(y) =
βS,h +βS,l

2
(
y(y−Lgeneration)+β

2
Lσ

2
T +σ

2
L
)
+

αS,h +αS,l

2
(
y−Lgeneration

)
+

(βS,h−βS,l)σ2
S
(
(y−Lgeneration)σ2

S +(Sb−Lgeneration)
(
β2

Lσ2
T +σ2

L
))

√
2π
(
σ2

S +σ2
L +β2

Lσ2
T
)3/2 e

− (y−Sb)2

2(σ2
S+σ2

L+β2
l σ2

T)

+
1
2
(
(βS,h−βS,l)

(
y(y−Lgeneration)+β

2
Lσ

2
T +σ

2
L
)
+(αS,h−αS,l)(y−Lgeneration)

)
× f0

√3
2

y−Sb√
σ2

S +σ2
L +β2

Lσ2
T


+

√
3
8

(
αS,h−αS,l +(βS,h−βS,l)(2y−Lgeneration)

)(
β2

Lσ2
T +σ2

L
)√

σ2
S +σ2

L +β2
Lσ2

T

× f1

√3
2

y−Sb√
σ2

S +σ2
L +β2

Lσ2
T


+

3
4

(βS,h−βS,l)
(
β2

Lσ2
T +σ2

L
)2

σ2
S +σ2

L +β2
Lσ2

T

× f2

√3
2

y−Sb√
σ2

S +σ2
L +β2

Lσ2
T

 .

To calculate the marginal benefit, we need to differentiate the above expression with re-

spect to the interruption amount. The final answer can be calculated in closed form, using the

following formulas:

d f0(µ)
dµ

=
2e−µ2/3
√

3π
,

d f1(µ)
dµ

=−4e−µ2/3µ
3
√

3π
,

d f2(µ)
dµ

=
4e−µ2/3 (2µ2−3

)
9
√

3π
.
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C. Solution of Case with Competing Retailers

To solve Equation (10) from the paper, we introduce the function

Benefit(i)(n, l∗, l(i))= E

(
pspot(n, l∗, l(i))

(
βL
(
T̄ + ∆̄T)+αL +βLσT εT +σLεL

n
−L(i)

generation− l(i)
))

,

where we have dropped the t subscript, set σT = σT
t , and where ∆̄T is the expected temperature

deviation from the historical average temperature on date t:

∆̄
T = E(∆T

t ) = ρ
T
1 ∆

T
t−1 +ρ

T
2 ∆

T
t−1.

The spot price depends on the amount of interruption, and, given the interruption of load

l∗ for each electricity retailer other than retailer i, and of load l(i) for retailer i, and is given by:

pspot(n, l∗, l(i)) = βS,l

(
βL
(
T̄ + ∆̄

T)+αL− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS

)
+αS,l

+Θ

(
βL
(
T̄ + ∆̄

T)+αL− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS−Sb

)
×
[(

βS,h−βS,l
)(

βL
(
T̄ + ∆̄

T)+αL− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS

)
+αS,h−αS,l

]
,

where Θ is the step function, with Θ(x) = 0, if x ≤ 0, and Θ(x) = 1, if x > 0.

Setting y = βL
(
T̄ + ∆̄T)+αL; i.e., equal to the expected load without any interruption, the

benefit from interruption is equal to:

Benefit(i)(n, l∗, l(i)) =
βS,l

n

(
β

2
Lσ

2
T +σ

2
L
)
+
(

βS,l

(
y− (n−1)l∗− l(i)

)
+αS,l

)(y
n
−L(i)

generation− l(i)
)

+E
[
Θ

(
y− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS−Sb

)
×
((

βS,h−βS,l
)(

y− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS

)
+αS,h−αS,l

)
×
(

y
n

+
1
n

(βLσT εT +σLεL)−L(i)
generation− l(i)

)]
,

(2)
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where we used that:

E
(
ε

2
T
)

= E(ε2
L) = 1,

E(εT εL) = E(εT εS) = E(εLεS) = 0.

Calculating the expected value in Equation (2) above, can be done in a way similar to Appen-

dix B. The total benefit, to all of the retailers, is given by:

nBenefit(i)
(

n, l∗, l(i)
)

=βS,l
(
β

2
Lσ

2
T +σ

2
L
)
+
(

βS,l

(
y− (n−1)l∗− l(i)

)
+αS,l

)(
y−nL(i)

generation−nl(i)
)

+E
[
Θ

(
y− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS−Sb

)
×
((

βS,h−βS,l
)(

y− (n−1)l∗− l(i) +βLσT εT +σLεL +σSεS

)
+αS,h−αS,l

)
×
(

y+βLσT εT +σLεL−nL(i)
generation−nl(i)

)]
(3)

We define the expected load after interruption by all the retailers,

x = y− (n−1)l∗− l(i)

Then, Equation (2) above, becomes identical to Equation (1) from Appendix B, under the

transformation

Benefit(x) = nBenefit(n, l∗, l(i))

Lgeneration = nL(i)
generation +(n−1)

(
l(i)− l∗

)
where the Benefit function and the variable Lgeneration on the left hand side correspond to the

definitions in Appendix B, while the Benefit function and the variables n, l∗,L(i)
generation, l

(i) on

the right hand side correspond to the definitions in this Appendix.

The calculation of the expected value, as well as its derivatives proceeds similar to the

calculation in Appendix B.
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D. Description of the Numerical Algorithm

The value function for either pay-in-advance or pay-as-you-go contracts solves the maximiza-

tion problem defined in Equation (5) from the paper, which we simplify here to:

πt(∆T
t ,∆T

t−1,Lremaining)

=β max
0≤l≤min(Ldaily,Lremaining)

{
E
[

∆π
(
Lt+1, pspot,t+1, l

)∣∣Ft
]
+E

[
πt+1

(
∆

T
t+1,∆

T
t ,Lremaining− l

)∣∣Ft
]}

In this equation, Lremaining is either Ladvance, remaining or Lpago, remaining, depending on whether

we are considering a pay-in-advance or a pay-as-you-go contract. For a pay-in-advance con-

tract, Lpago, remaining = 0, while for a pay-as-you-go contract, Ladvance, remaining = 0. The first

term in the maximization on the right hand side, in the case of pay-in-advance contracts, can

be rewritten as

E
[

∆π
(
Lt+1, pspot,t+1, l

)∣∣Ft
]

16
= Lunder contract preduced−Lgeneration pgeneration− l preduced−Benefit(yt+1)

and, in the case of pay-as-you-go contracts, can be written as:

E
[

∆π
(
Lt+1, pspot,t+1, l

)∣∣Ft
]

16

= pretailE [Lt+1|Ft ]−Lunder contract pretail−Lgeneration pgeneration

− l (pfine + pretail)−Benefit(yt+1)

=
(
βL
(
T̄t+1 + ∆̄

T
t+1
)
+αL−Lunder contract

)
pretail−Lgeneration pgeneration

− l (pfine + pretail)−Benefit(yt+1) ,

where the Benefit function is defined in Appendix B and yt+1 is the expected load on date t +1,

after interruption l, yt+1 = βL
(
T̄t+1 + ∆̄T

t+1
)
+ αL− l. Dropping constant terms (independent

of l) we can see that the optimization problem for the pay-in-advance contract is similar to the

problem for the pay-as-you-go contract.
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The algorithm for calculating the value function is the following:

• We set the value function on the terminal date equal to zero

πtfinal = 0

• On the date immediately prior to the terminal date, we discretize the state space (∆T
tfinal−1,

∆T
tfinal−2,Lremaining), to an NT ×NT ×NL grid, where both ∆T

tfinal−1 and ∆T
tfinal−2 varies be-

tween −DT and DT and Lremaining varies between 0 and Lyearly. For each point on the

grid, we solve the constrained optimization problem:

πtfinal−1 = β max
0≤l≤min(Ldaily,Lremaining)

{
E
[

∆π
(
Lt+1, pspot,t+1, l

)∣∣Ft
]}

The number of one-dimensional constrained optimization problems that are solved is

equal to the number of points on the grid, NT ×NT ×NL.

• On every date t < tfinal−1, we compute πt
(
∆T

t ,∆T
t−1,Lremaining

)
on the same NT ×NT ×NL

grid as in the previous step. For each grid point in the state space (∆T
t ,∆T

t−1,Lremaining),

we need to solve a constrained optimization problem. We express:

E
[

πt+1
(
∆

T
t+1,∆

T
t ,Lremaining− l

)∣∣Ft
]
= E

[
πt+1

(
ρ

T
1 ∆

T
t +ρ

T
2 ∆

T
t−1 +σ

T
t+1ε

T ,∆T
t ,Lremaining− l

)]
Since we only know πt+1 on the grid points, we need to perform several interpolations.

– We interpolate πt+1 along the ∆T
t+1 direction using cubic splines with natural boun-

dary conditions,

πt+1
(
·,∆T

t ,Lremaining
)
→ f (x)

for each point in the (∆T
t ,Lremaining) directions. This step results in the calculation

of NT ×NL cubic splines over NT points.
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– For each grid point at time t, (∆T
t ,∆T

t−1,Lremaining, we calculate the value of

E
[
πt+1

(
ρT

1 ∆T
t +ρT

2 ∆T
t−1 +σT

t+1εT ,∆T
t ,Lremaining

)]
by performing the one-dimensional

integration

E
[
πt+1

(
ρ

T
1 ∆

T
t +ρ

T
2 ∆

T
t−1 +σ

T
t+1ε

T ,∆T
t ,Lremaining

)]
=
Z

∞

−∞

dε e−
ε2
2

√
2π

f
(
ρ

T
1 ∆

T
t +ρ

T
2 ∆

T
t−1 +σ

T
t+1ε

)
This step results in NT ×NT ×NL one dimensional integrations.

– We define the value of a function g at time t as

g
(
∆

T
t ,∆T

t−1,Lremaining
)

= E
[
πt+1

(
ρ

T
1 ∆

T
t +ρ

T
2 ∆

T
t−1 +σ

T
t+1ε

T ,∆T
t ,Lremaining

)]
From the previous steps, we have already calculated the value of the function g on

all the grid points at time t. For the case of the pay-in-advance contract, the value

function at time t is given by

πt
(
∆

T
t ,∆T

t−1,Lremaining
)

= 16β
(
Lunder contract preduced−Lgeneration pgeneration

)
+β max

0≤l≤min(Ldaily,Lremaining)

(
g
(
∆

T
t ,∆T

t−1,Lremaining− l
)
−16l preduced−16Benefit(yt+1)

)
The case of the pay-as-you-go contract is similar.

– For each grid point at time t, in the (∆T
t ,∆T

t−1) directions, we find an interpolating

cubic spline with natural boundary conditions for

g
(
∆

T
t ,∆T

t−1, ·
)
→ h(x)

This step results in the calculation of an additional NT ×NT cubic splines over NL

points.
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– For each grid point at time t, (∆T
t ,∆T

t−1,Lremaining), we calculate the value function

πt by solving the constrained maximization problem

max
0≤l≤min(Ldaily,Lremaining)

(
h
(
Lremaining− l

)
−16l preduced−16Benefit(yt+1)

)
This step results in an additional NT ×NT ×NL one dimensional constrained opti-

mization problems.

• We repeat the previous step until t = 0.

Overall, to find the optimal policy at time t, we calculate NT ×NL cubic splines over NT

points and NT ×NT cubic splines over NL points, as well as NT ×NT ×NL one dimensional

integrals, and solve NT ×NT ×NL constrained maximizations.

To estimate the accuracy of the approximations, once we have the optimal interruption po-

licy from the dynamic programming algorithm, we perform Monte-Carlo simulation following

the prescribed interruption policy. We can get a measure of the accuracy of the interpolations

by comparing the estimate of the value function calculated from the Monte-Carlo simulation

and the value function calculated from dynamic programming. In all the results we report,

the value of the value function calculated from dynamic programming was within two stan-

dard errors of the mean of the average value of the value function calculated by Monte-Carlo

simulation.

As noted in the text, in our numerical experiments we took NT = 21, NL = 20, DT = 10.

The algorithm was programmed in C using the GNU Scientific Library for interpolations,

integrations and maximizations. Running on an 1.7 GHz Pentium 4 processor, the program

computes the value of a 90 day contract in 90 seconds and performs 10,000 Monte Carlo

simulations in 3 seconds.
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Table 1
Approximation of the functions f0, f1, f2

i j ai
j bi

j
0 0 3.1694680E−08 1.0000000E +00
0 1 6.5146886E−01 −3.8168394E−01
0 2 −2.4864378E−01 2.1239734E−01
0 3 6.5930468E−02 −4.9218606E−02
0 4 −4.3010262E−03 1.3075845E−02
0 5 1.8398374E−04 −1.3997635E−03
0 6 6.8124638E−05 1.4880846E−04
0 7 1.4816344E−05 1.3044717E−05
1 0 6.5146999E−01 1.0000000E +00
1 1 −3.8826942E−01 −5.9599249E−01
1 2 3.0697238E−02 3.8049119E−01
1 3 3.4874636E−02 −1.4533331E−01
1 4 −1.3650616E−02 5.0873548E−02
1 5 2.3832165E−03 −1.2563172E−02
1 6 −2.2830602E−04 2.5248551E−03
1 7 1.1699271E−05 −3.1379021E−04
1 8 −2.5225764E +00 2.4213828E−05
2 0 −2.9502545E−09 1.0000000E +00
2 1 −4.3431318E−01 −5.2710566E−01
2 2 2.2892650E−01 3.4825716E−01
2 3 −6.4638843E−03 −1.2582758E−01
2 4 −2.1729456E−02 4.5417004E−02
2 5 6.7240331E−03 −1.1095136E−02
2 6 −9.2026844E−04 2.3693399E−03
2 7 6.2239652E−05 −3.0583503E−04
2 8 −1.6976963E−06 2.7110737E−05
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