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1. Introduction

Periodic orbits have long served as tools to study the long term behavior of dynamical
systems (as witnessed, for example, by Poincaré, see [Po93]). In 1979, Greene proposed a
numerical criterion, based on the behavior of periodic orbits, to determine the parameter
values at which breakdown of certain invariant circles of twist maps of the annulus
occurs. The criterion (henceforth called “Greene’s criterion”, see [Gr79] for a precise
formulation) is remarkably accurate and has provided valuable intuition that led to the
formulation of a renormalization group theory for the breakdown of invariant circles for
twist maps of the annulus (see [McK82]).

Determining the parameter values at which breakdown of invariant surfaces occurs
has significant practical importance, as invariant surfaces present barriers to phase-space
diffusion. Part of Greene’s criterion (initially conjectured in [Gr79] and later proved in
[McK92, FL92]) asserts that in twist maps of the annulus that admit an invariant circle
with diophantine rotation number, a certain limit – taken along periodic orbits in the
neighborhood of the invariant circle and based on their stability properties – is equal
to zero. Moreover, if the invariant circle is analytic, the limit is reached exponentially
fast. Such behavior can, and has been, efficiently investigated numerically.

We present a similar result for certain high-dimensional symplectic and quasi-
periodic perturbations of symplectic maps, satisfying non-degeneracy assumptions. If
an invariant surface Γ exists and is analytic, or sufficiently differentiable, and motion
on Γ is conjugate to rigid rotation with a diophantine rotation vector, we show that
all the eigenvalues of the derivative of the map along periodic orbits in a neighborhood
of Γ tend to 1 (exponentially, if the invariant surface is analytic) as the periodic orbit
approaches Γ. A precise statement is given in section 2.

Our results are of a local nature and involve only a neighborhood of the invariant
surface. Existence of an invariant surface imposes severe restrictions for the map in a
neighborhood of the surface. Indeed, we show that in an appropriate neighborhood of
the invariant surface the map is close to integrable and using a perturbative argument
one can control the behavior of periodic orbits. In this setting the distance from the
invariant surface plays the role of a small parameter and one can deduce that periodic
orbits with rotation vectors close to the rotation vector of the invariant surface exist
close to the surface. In [PW94] similar ideas were used to deduce long-term stability
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for orbits that come close to an invariant surface.

2. Notation and statement of results

We will study two distinct cases: (a) symplectic maps and (b) quasiperiodic pertur-
bations of symplectic maps (i.e. skew-products of symplectic maps and quasi-periodic
rotation — a particular case of volume-preserving maps).

In the first case we consider maps f , either Cr or analytic, from the space TTd× IRd

to itself, satisfying

(i) they preserve the natural symplectic 2-form ω =
∑d

i=1 dφi ∧ dAi

(ii) ∂φ′/∂A is a non-singular matrix (of dimension d)

where φ′ the first coordinate of f̃(φ,A) for f̃ a lift of f . We will call a function f

satisfying (i) and (ii) a 2d-dimensional non-singular symplectic map. Examples of Cr

maps satisfying (i), (ii) for d = 1 are called (positive or negative) twist maps of the
annulus.

In the second case we consider maps f : TTd+e×IRd → TTd+e×IRd that are periodic
or quasi-periodic skew-products on TTe where f |TTd×IRd : TTd × IRd → TTd × IRd satisfies
(i), (ii).

We say that x is a periodic orbit of type (P/N), P ∈ ZZc, where c = d for the
case of the symplectic maps or c = d + e for the case of quasi-periodic perturbations of
symplectic maps, N ∈ IN∗(≡ IN−{0}), if fN (x) = x and f̃N (x̃) = x̃+(P, 0), where f̃ , x̃
a (fixed) lift of f,x to the universal cover of TTc × IRd. We will call N the period of the
orbit. Notice that only periodic skew-products can have periodic orbits. For c-vectors
we will use the norm ‖ω‖c =

∑c
i=1 |ωi|.

We define the rotation vector of an orbit of f̃ as the c-dimensional vector

ω = lim
i→∞

π1(f̃ i(x, y))− x

i

if the limit exists, where π1 the projection on the first c (angle) coordinates π1(x, y) = x.
For a periodic orbit of type (P/N) the rotation vector is ω = P/N .
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We will consider sets with rotation vectors that are not well approximated by
rational vectors. We define a c-dimensional vector to be (diophantine) of type (K, τ) if

(2.1) |P · ω| ≥ K

‖P‖τ
c

, P ∈ ZZc, P 6= 0,K > 0

It is known (see [Ar88]) that if τ > c − 1 the set of vectors of type (K, τ) has positive
Lebesgue measure in the unit c-dimensional cube.

We now state our results for periodic orbits that approach invariant sets of f .

Theorem 2.1. Let f ∈ Cr(TTd × IRd), r > 1 satisfy (i), (ii) and admit a Cr invariant

surface Γ, homotopic to TTd×{0}, on which the motion is Cr conjugate to rigid rotation

with rotation vector ω of type (K, τ). Moreover assume that in a neighborhood of Γ
there are periodic orbits x(P/N) of type (P/N) for ‖Nω − P‖d small enough.

Then, for k ∈ IN, k < r−1
τ we can find Dk > 0, such that the eigenvalues λ1, . . . , λ2d

of the derivative DfN (x(P/N)) satisfy

|λi − 1| ≤ Dk‖Nω − P‖k/2
d N, i = 1, . . . , 2d

In the case where the map f and the invariant surface are analytic in a poly-strip
Iδ around the invariant surface Γ and analytically conjugate to rigid rotation, we can
compute the coefficients Dk and choose the k that gives the best bound.

Theorem 2.2. Let f : TTd × IRd → TTd × IRd analytic satisfy (i), (ii) and admit an

analytic invariant surface Γ, homotopic to TTd×{0}, on which the motion is analytically

conjugate, with conjugacy γ, to rigid rotation with rotation vector ω of type (K, τ).
Moreover assume that in a neighborhood of Γ there are periodic orbits x(P/N) of type

(P/N) for ‖Nω − P‖d small enough. If f, γ are bounded in a neighborhood of the

invariant surface then the eigenvalues λ1, . . . , λ2d of the derivative DfN (x(P/N)) satisfy

|λi − 1| ≤ D̃1N exp(−D̃2‖Nω − P‖
−1

2(1+τ)

d )

where D̃1, D̃2 depend on the width of the domain of analyticity of f, γ, on the properties

of ω (i.e. K, τ) and on the dimension d.
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In the case d = 1, the behavior of the eigenvalues is completely determined by the
trace of the derivative along the periodic orbit. In analogy with that case, we define the
residue of a periodic orbit with period N , as

(2.2) R(x) =
1
4d

[
2d− Tr(DfN (x))

]
Our definition is an extension of the one used by Greene in [Gr79] for two-dimensional
twist maps of the annulus. The factor (4d)−1 assures that the residue of elliptic periodic
orbits (i.e. orbits for which the eigenvalues of Df̃N lie on the unit circle) is between
zero and one.

In [Gr79] Greene formulated a criterion for the breakdown of invariant curves of
twist maps based on the behavior of the residue of periodic orbits. As indicated by The-
orem 2.2, an analog of the criterion in higher dimensions should consider the behavior
of additional quantities, other than the residue, such as the eigenvalues of DfN along
periodic orbits.

Notice that, due to invariance under cyclic permutations, the residue of a periodic
orbit is the same for all the points of the orbit. Also, since the definition only involves
derivatives, the residue is invariant under C1 changes of variables. For integrable maps
(i.e. maps conjugate to g̃(x, y) = (x + h(y), y) for h : IRd → IRd) the residue of all
periodic orbits is zero. From Theorem 2.1, Theorem 2.2 we have the following corollary:

Corollary 2.3. Let f ∈ Cr(TTd × IRd), r > 1 (resp. analytic) satisfy (i), (ii) and admit

a Cr (resp. analytic) invariant surface Γ, homotopic to TTd ×{0}, on which the motion

is Cr (resp. analytically) conjugate to rigid rotation with rotation vector ω of type

(K, τ). Moreover assume that in a neighborhood of Γ there are periodic orbits x(P/N)

of type (P/N) for ‖Nω − P‖d small enough.

Then, for k ∈ IN, k < r−1
τ we can find Ck > 0, such that

|R(x)| ≤ Ck‖Nω − P‖k/2
d N

(resp. |R(x)| ≤ C̃1N exp(−C̃2‖Nω − P‖
−1

2(1+τ)

d ))

Remark. In the case d = 1 the continued-fraction convergents to ω provide a series of
numbers {Mi/Ni}∞i=0 such that

(2.3) |ω −Mi/Ni| ≤ KN−2
i , for all i, ω
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In that case it is possible to show that if an analytic invariant curve exists

lim
i→∞

sup |R(xi)|1/Ni ≤ 1

where the limit is taken along continued fraction convergents. Unfortunately, in higher
dimensions, we are not aware of an efficient approximation scheme that can produce
convergents to an arbitrary rotation vector with d components that satisfy an inequality
similar to (2.3) (such schemes exist for certain classes of rotation vectors though – e.g.
golden vectors of the Jacobi-Perron algorithm for d = 2, see [Kos91]).

Remark. Theorem 2.1 and Theorem 2.2 are local results that apply in a neighborhood
of the invariant surface. Thus, assumptions (i), (ii) can be relaxed to assumptions (i)
and (ii) holding only in a neighborhood of the invariant surface Γ.

For the case of volume-preserving maps that are quasi-periodic skew-products of
symplectic maps over TTe, i.e. of the form

f(θ, φ, A) = (f1(θ, φ, A), φ + ω2, f2(θ, φ, A))

for f1 : TTd+e × IRd → TTd, f2 : TTd+e × IRd → IRd, θ ∈ TTd, φ ∈ TTe, ω2 ∈ TTe irrational
vector, we introduce the extension f∗ : TTd+e × IRd+e → TTd+e × IRd+e with

f∗(θ, φ, A1, A2) = (f1(θ, φ, A1), φ + A2, f2(θ, φ, A1), A2)

which at A2 = ω2 reduce to f . If f admits an invariant surface Γ then f∗ admits an
invariant surface Γ∗ at A2 = ω2. Moreover we introduce the restriction f∗ω : TTd+e ×
IRd → TTd+e × IRd with ω ∈ TTe and

f∗ω(θ, φ, A) = f∗(θ, φ, A, ω)

If f∗ admits a periodic orbit x of type ((P1, P2)/N) then f∗P2/N admits a periodic orbit
x̄ of the same type.

Theorem 2.4. Let f : TTd+e × IRd → TTd+e × IRd ∈ Cr, r > 1 (resp. analytic) be a

quasi-periodic skew-product of a symplectic map satisfying (i), (ii) over TTe such that

f |TTe
is rigid rotation with a diophantine rotation vector. Assume that f admits a Cr

(resp. analytic) invariant surface Γ, homotopic to TTd+e × {0}, on which the motion is
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Cr (resp. analytically) conjugate to rigid rotation with rotation vector ω of type (K, τ).
Moreover assume that in the extension f∗ of f there is a neighborhood of Γ∗ where

there are periodic orbits x(P/N) (P ≡ (P1, P2) ∈ ZZd+e) of type (P/N) for ‖Nω−P‖d+e

small enough.

Then, for k ∈ IN, k < r−1
τ we can find Dk > 0, such that 2d of the eigenvalues

λ1, . . . , λ2d of the derivative D
(
(f∗P2/N )N

)
(x̄(P/N)) satisfy

|λi − 1| ≤ Dk‖Nω − P‖k/2
d N, i = 1, . . . , 2d

(resp. |λi − 1| ≤ D̃1N exp(−D̃2‖Nω − P‖
−1

2(1+τ)

d ), i = 1, . . . , 2d)

The remaining e eigenvalues are identically 1.

Our results cover the case that f admits an invariant surface on which motion is
conjugate to rotation. In [FL92] it was shown that if f admits an invariant set on which
motion is semi-conjugate to rotation then there are periodic orbits approaching the
invariant set under certain conditions on the Lyapunov exponents of f on the invariant
set. We include the statements of the theorems in [FL92] for completeness.

Theorem 2.5. (Theorem 2.3 in [FL92])
Assume Γ is a hyperbolic set of rotation vector ω and that {xn} is a sequence of periodic

points of type (Mn/Nn) such that orbit(xn) converges to Γ. Then, for sufficiently large n,

|R(xn)|1/Nn > λ > 1. Actually, if the hyperbolic set has maximum Lyapunov exponent

γ, then limn R(xn)1/Nn = eγ .

Theorem 2.6. (Theorem 4.3 in [FL92])
Let f : M → M be a C2 diffeomorphism leaving invariant the ergodic measure µ.

Assume that, with respect to this measure, f has no zero Lyapunov exponents. Then,

for almost every point x0 in the support of µ, it is possible to find a sequence {xn}∞n=0

of periodic points that converge to x0. Moreover, the sequence of orbits can be chosen

in such a way that the Lyapunov exponents of xn converge to the Lyapunov exponents

of x0.
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3. Proof of the results

3.1. The Cr case for symplectic maps

In this section we will consider the case of symplectic maps f , satisfying conditions
(i), (ii). The proof consists of three parts. In the first part we will construct a normal
form in the neighborhood of the invariant surface and approximate the map in that
neighborhood with an integrable mapping. The distance between our map and the inte-
grable map can be made O(‖H‖k

d) where H are the actions in an appropriate coordinate
system, for k depending on the smoothness of the invariant surface and the type of the
rotation vector.

In the second part we will show that in a small enough neighborhood of the invariant
surface the rotation vector of periodic orbits that stay in the neighborhood cannot differ
from the rotation vector of the invariant surface more than the size of the neighborhood.

The last part is a perturbation argument, that allows us to estimate the eigenvalues
of the derivative along periodic orbits that stay close to the invariant surface.

We begin the proof by making a change of variables to a new system of coordinates,
more convenient for studying a neighborhood of the invariant surface.

Proposition 3.1. Let f as above, Γ a Cr invariant surface (which is a graph of a Cr

function γ : TTd → IRd) and f |Γ Cr conjugate to rigid rotation with rotation vector

ω. Then we can find a symplectic, Cr−1 mapping h defined in a neighborhood of Γ,

with a Cr−1 inverse in a neighborhood of Γ and Cr−1 functions v : TTd × IRd → TTd, u :
TTd × IRd → IRd such that

(3.1) h ◦ f ◦ h−1(φ,A) = (φ + ω + Av(φ,A), A + A2u(φ,A))

where A2 implies all quadratic combinations of the various A’s.

Proof. The proof consists of two steps. We first shift the action coordinates so that
(φ, 0) becomes the invariant surface. Then we use the conjugacy to rigid rotation to
deduce (3.1).
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Define h1 : TTd × IRd → TTd × IRd by

h1(φ,A) = (φ,A + γ(φ))

Then h1 is in Cr, symplectic and sends TTd ×{0}d to the graph of γ. Thus h1 ◦ f ◦ h−1
1

leaves the surface TTd × {0}d invariant, i.e. there exist Cr functions v1 : TTd × IRd →
TTd, u1 : TTd × IRd → IRd such that

h1 ◦ f ◦ h−1
1 (φ,A) = (v1(φ,A), Au1(φ,A))

Since the motion on the surface is Cr conjugate to rigid rotation, there is a Cr

function δ : TTd → TTd with a Cr inverse (hence [Dδ]−1 exists) such that v1(δ(φ), 0) =
δ(φ + ω).

We introduce (for r > 1) the Cr−1 symplectic transformation

h2(φ,A) = (δ(φ), [Dδ]−1A)

with

(3.2) h−1
2 ◦ h1 ◦ f ◦ h−1

1 ◦ h2(φ,A) = (φ + ω + Av2(φ,A), Au2(φ,A)).

where v2 : TTd × IRd → TTd, u2 : TTd × IRd → IRd are Cr−1 functions with

v2(φ,A) = A−1

(
δ−1(v1(δ(φ), [Dδ]−1A))− δ−1(v1(δ(φ), 0))

)
u2(φ,A) = u1

(
δ(φ), [Dδ]−1A

)
We have

∂A′
i

∂Aj

∣∣
A=0

=
∂φ′i
∂φj

∣∣
A=0

= 0, i 6= j

∂φ′i
∂φi

∣∣
A=0

= 1, ∀ i

∂A′
i

∂φj

∣∣
A=0

= 0, ∀ i, j

so, since the map is symplectic

∂A′
i

∂Ai

∣∣
A=0

= 1, ∀ i
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Moreover, from condition (ii) ∂φ′i/∂Ai 6= 0 or v2(φ, 0) 6= 0. This concludes the proof of
Proposition 3.1.

Remark. In the case d = 1, Birkhoff’s theorem guarantees that an invariant curve of
a non-singular symplectic map, with irrational rotation number is a graph. Birkhoff’s
theorem fails in the case that the twist condition (condition (ii) for d = 1) is violated.
Also for higher dimensions we are not aware of an analog of Birkhoff’s theorem (in
the case d = 2 there is an analog of Birkhoff’s theorem for a class of maps that can
be expressed as a finite number of compositions of one-dimensional twist maps – see
[Ma91]). In the general case, the condition that the invariant curve is a graph over
TTd can be substituted by a more local condition (weaker in the case of the maps we
have been studying and also applying for singular symplectic maps – i.e. maps with
zero torsion). If Γ is homotopic to TTd there are coordinates, in a neighborhood of Γ
for which the invariant surface reduces to a graph. Then, condition (ii) needs only be
satisfied in a neighborhood of the invariant surface, in the transformed coordinates (3.2)
(i.e. v2(φ, 0) 6= 0) for the conclusions of Theorem 2.1 to be valid.

We introduce some further notation. In the following we use {m} as a multi-index.
The notation {m} will denote all possible combinations of indices 1j1

, . . . , djd
such that∑d

l=1 ljl
= m. Moreover, the expression A{m} will mean all possible combinations of

the different A’s raised to all possible indices allowed from the condition
∑d

l=1 ljl
= m.

Also, a symbol Q{m} “multiplying” A{m} will denote a multitude of functions, one
for each combination of the A’s allowed (e.g. Q{1} corresponds to d functions, Q{2}

corresponds to d(d + 1)/2 functions, etc.)

We can now construct a normal form for f in a neighborhood of the invariant
surface. We first construct d independent approximate integrals in a small neighborhood
of the invariant surface.

Lemma 3.2. Let f ∈ Cr as above and ω a rotation vector of type (K, τ). Then,

given any k ∈ IN, k < r−1
τ , we can find functions H{0},H{1}, . . . ,H{k} : TTd → IRd and



Approximation by periodic orbits. Rigorous results 11

constants Ck such that H : TTd × IRd → IRd

H =
k∑

m=0

A{m}H{m}(φ)

satisfies

‖H ◦ f −H‖ ≤ Ck+1‖A‖
k+1
d

Proof. Expanding in A we have

H ◦ f(φ,A) =
∑
m

(A + A{2}u(φ,A)){m}H{m}(φ + ω + Av(φ,A))

=
∑
m

(A + A{2}u(φ,A)){m}
[

k∑
l=0

c{l}
∂H{m}

∂A{l} (φ + ω + Av(φ,A))|A=0 + O(A{m+k+1})

]

=
k∑

m=0

A{m}
[
H{m}(φ + ω) + H{m−1}(φ + ω)u(φ, 0) + L{m}(φ)

]
+ O(A{k+1})

where c{l} the coefficients of the Taylor expansion and L{m} depends on H{0},H{1},

. . . , H{m−2} and their derivatives up to order m, as well as on the derivatives of H{m−1}.
Notice that changes in H{m−1} by a constant do not affect L{m}.

Matching terms by order we have

(3.3)
H{0}(φ) =H{0}(φ + ω)

H{m}(φ) =H{m}(φ + ω) + H{m−1}(φ + ω)u(φ, 0) + L{m}(φ)

Equations (3.3) are of the form

(3.4) g(φ + ω)− g(φ) = f(φ)

It is well known (see [SM71], [Ar88]) that for the case of ω of type (K, τ), given f ∈ Cq

with zero average over the d-torus, there exists g ∈ Cq−(τ+ε) that satisfies (3.4) (for every
ε > 0, q > τ).For {0}, the only possible continuous solution is H{0} = constant (from the
condition

∫
TTd L{1}dφ = 0, if

∫
TTd u(φ, 0)dφ 6= 0 we get H{0} = 0). If, for {m},m > 0,

H{0},H{1}, . . . ,H{m−2} are uniquely determined and H{m−1} is determined up to a
constant, then L{m} is completely determined. Moreover, H{m} can be determined up
to a constant if and only if

(3.5)
∫

TTd

[L{m}(φ) + u(φ, 0)H{m−1}(φ + ω)]dφ = 0
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which uniquely determines the average value of H{m−1} in the case
∫
TTd u(φ, 0) 6= 0. In

the case
∫
TTd u(φ, 0) = 0 we can show that the choice

∫
TTd H{m}(φ) = 0, m ≥ 0 satisfies

(3.5). To this end, consider the truncation H [≤m−1] =
∑m−1

l=0 A{l}H{l}(φ), satisfying
(3.3) up to order m− 1. Then we have∫

TTd

{H [≤m−1](φ,A)−H [≤m−1] ◦ f(φ,A)}dφ = 0

since f symplectic implies f preserves volume in phase-space. We have

H [≤m−1](φ,A)−H [≤m−1] ◦ f(φ,A) =A{m}
(
L{m}(φ) + u(φ, 0)H{m−1}(φ + ω)

)
+ O(A{m+1})

thus, condition (3.5) is satisfied.

The process can, inductively, be carried out as long as L{k} is smooth enough (at
least Cτ+ε). Since in every step of the induction the smoothness of L{k} decreases by
τ , we have the bound kτ > r − 1 or k < r−1

τ . If f is C∞ or analytic the induction can
be carried out for all k ∈ IN.

We have constructed d functions H that are approximate integrals in the vicinity
of the invariant surface. Since H{0} = 0, H is a small perturbation of A and the surface
H = h, for ‖h‖d small, is topologically nontrivial.

Defining

H̄(h) =
∫

H=h

Adφ

the function H̄ is conserved under f up to O(‖A‖k+1
d ) in a neighborhood of A = 0.

We change coordinates, in such a way that H̄ replaces A, using a generating function
S

(3.6) S(Φ, A) =

(
A +

∫
TTd

k∑
m=2

A{m}H{m}(s)ds

)
Φ

The function S generates the symplectic transformation

(3.7)

H̄ = D1S(Φ, A) = A +
∫

TTd

k∑
m=2

A{m}H{m}(s)ds

φ = D2S(Φ, A) = Φ

(
1 +

∂

∂A

∫
TTd

k∑
m=2

A{m}H{m}(s)ds

)
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In the new coordinates

(3.8) f(Φ, H̄) = (Φ + ω + H̄∆(H̄), H̄) + E(Φ, H̄)

where the remainder satisfies (in appropriate norms) ‖E‖ ≤ Ck‖H̄‖k+1
d and ∆(0) 6= 0.

Remark. Another way to construct the normal form would be to perform successive
canonical transformations (for example using the method of Lie transforms) and reduce
f to an integrable map, up to O(A{k+1}), in a neighborhood of the invariant surface.
The method of successive canonical transformations has been used in the case d = 1 in
[McK92], whereas the method of constructing an approximate integral in [FL92]. We
favor the method of constructing approximate integrals, since it lends itself to efficient
numerical implementations.

In the case that the map f is analytic, our estimates hold in a complex neighborhood
of TTd × {0}d of the form {|Im Φi| < ξ, |H̄i| ≤ ξ, i = 1, . . . , d} for some ξ > 0.

In the new (Φ, H̄) coordinates, we have ‖DE‖ ≤ Ck‖H̄‖k
d and

(3.9) Df(Φ, H̄) =
(

1 F (H̄)
0 1

)
+ O(‖H̄‖k

d)

where F (H̄) = ∆(H̄) + H̄∆′(H̄).

In a neighborhood of the invariant surface only periodic orbits with rotation vectors
close to the rotation vector of the invariant surface are allowed. Since F (0) 6= 0, using
the implicit function theorem, we conclude that the actions H̄per of a periodic orbit of
period N in the vicinity of the invariant surface are bounded by

C1‖Nω − P‖d ≤ ‖H̄per‖d ≤ C2‖Nω − P‖d

The existence of periodic orbits for maps that are close to integrable (such as map
(3.8) in a neighborhood of the invariant surface) has been studied in the case where f

has a generating function, in [BK87] and [LW93]. It was shown that some periodic orbits
of the integrable system persist, for small enough perturbation, and their distance from
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the original periodic orbits can be bounded by the size of the perturbation. Although
in [LW93] only Hamiltonian flows were considered (which correspond to maps with a
generating function) the methods used could be easily extended to periodic orbits of
symplectic maps that do not have a generating function.

The last part of the proof consists of a simple perturbative argument. Since we
are interested in the eigenvalues of the derivative along periodic orbits, we estimate the
norm of products of matrices close to the ones appearing in (3.9).

Lemma 3.3. Let {Ai}N
i=1 be a set of 2d× 2d matrices of the form

Ai =
(

1 ai

0 1

)
with

max

(
1, sup

1≤i≤N
( sup
1≤l,k≤d

|(ai)lk|)

)
≤ A

and {Bi}N
i=1 satisfy

sup
1≤i≤N

1≤j,k≤2d

|(Bi)jk − (Ai)jk| ≤ ε with ε < A .

Then, all the eigenvalues λ1, . . . , λ2d of B ≡ B1 . . . BN , satisfy

|1− λi| ≤ 2{(1 + 3d
√

A
√

ε)N − 1}

Proof. We introduce the following norms for vectors and matrices: for a vector in
IR2d we define ‖v‖δ =

∑d
i=1(|vi|δ + |vi+d|) and for any 2d × 2d matrix C, ‖C‖δ =

supv∈IR2d ‖Cv‖δ/‖v‖δ. Then, if λ is an eigenvalue of C, we have |λ| ≤ ‖C‖δ.

For the matrices Ai, Bi and for δ < 1

(3.10)
‖Ai‖δ ≤ 1 + d max(1, |(ai)jk|)δ ≤ 1 + dAδ

‖Ai −Bi‖δ ≤ ε max(d + dδ, d + dδ−1) = εd(1 + δ−1)

To prove the claim about the eigenvalues of B, notice that the eigenvalues of B−I,
µ1, . . . , µ2d satisfy

|µi| ≤ ‖B −A1 · · ·AN + A1 · · ·AN − I‖δ ≤ ‖B −A1 · · ·AN‖δ + ‖A1 · · ·AN − I‖δ
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We write

B = B1 . . . BN = (A1 + (B1 −A1))(A2 + (B2 −A2)) . . . (AN + (BN −AN ))

Expanding, grouping terms, we get

B = A1 · · ·AN +
∑

i

A1 · · ·Ai−1(Bi −Ai)Ai+1 · · ·AN

+
∑
i,j

A1 · · ·Ai−1(Bi −Ai)Ai+1 · · ·Aj+1(Bj −Aj)Aj+1 · · ·AN

+ · · ·

+ (B1 −A1) · · · (BN −AN )

or

‖B −A1 · · ·AN‖δ ≤
(

N

1

)
max

i
‖Ai‖

N−1
δ ‖Bi −Ai‖δ

+
(

N

2

)
max

i
‖Ai‖

N−2
δ ‖Bi −Ai‖2

δ

+ · · ·

+
(

N

N

)
max

i
‖Bi −Ai‖N

δ

and using the estimates (3.10)

‖B −A1 . . . AN‖δ ≤ [1 + dAδ + d(1 + δ−1)ε]N − [1 + dδA]N

Choosing δ = (ε/A)1/2 < 1 we obtain

(3.11) ‖B −A1 . . . AN‖δ ≤ [1 + 3d
√

A
√

ε]N − 1

Similarly ‖A1 · · ·AN − I‖δ can be bounded, following the same steps as above by

‖A1 · · ·AN − I‖δ ≤ (1 + d
√

A
√

ε)N − 1

Since µi = λi − 1 we have

|λi − 1| ≤ (1 + 3d
√

A
√

ε)N + (1 + d
√

A
√

ε)N − 2 ≤ 2{(1 + 3d
√

A
√

ε)N − 1}
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Putting all the estimates together, for N large enough, we can bound all the eigen-
values of DfN (x) for a (P/N) periodic orbit by

|λi − 1| ≤ Dk‖Nω − P‖k/2
d N

This concludes the proof of Theorem 2.1.

3.2. The analytic case

To prove Theorem 2.2 we only need to compute the values of the constants Ck, Dk and
choose the best value for k. The optimal bound depends on the diophantine properties
of the rotation vector ω.

In this section we use the following norms for analytic functions over a complex
neighborhood Tδ = {(φ,A)|Re φi ∈ [0, 1], |Im φi| ≤ δ, |Ai| ≤ δ} of the invariant surface

‖F‖δ ≡ sup
Tδ

|F |

or, if F denotes several functions

‖F‖δ ≡ max
i
‖Fi‖δ

We first state a lemma that provides quantitative bounds for the solution to equa-
tions similar to (3.4).

Lemma 3.4. Let L be a bounded analytic function on Tδ and assume L has zero average

over TTd. For ω diophantine of type (K, τ) we can find a solution of the equation

H(φ)−H(φ + ω) = L(φ)
unique, up to an additive constant, on Tδ. Moreover, the solution is bounded on any

smaller domain Tδ−η by

‖H‖δ−η ≤ CK,τ,dη
−τ‖L‖δ

for any 0 < η < δ.

A proof of Lemma 3.4 can be found in [Rüs75, Rüs76, Ar88, FB89].
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In the process of constructing d approximate integrals in the neighborhood of the
invariant surface we need to solve the equations

H{m}(φ)−H{m}(φ + ω) = H{m−1}(φ + ω)u(φ, 0) + L{m}(φ)

where L{m}(φ) = L1
{m}(φ)− L2

{m}(φ) with

L1
{m}(φ) =

m∑
j=1

1
{j}!

(
∂

∂A

){j}
H{m−j}(φ + ω + Av(φ,A))|A=0

L2
{m}(φ) =

m∑
j=2

H{m−j}(φ)
1
{j}!

(
∂

∂A

){j}
(A + A{2}u(φ,A)){j}|A=0

under the condition (3.5).

We will use induction to estimate bounds on the H’s.

Theorem 3.5. If the invariant surface is analytic in Tδ and ω is diophantine of type

(K, τ) then

‖H̃{m}‖δ−mη ≤ EDm

max |H̄{m}| ≤ EDm

where H̄ =
∫
TTd Hdφ, H̃ = H − H̄, δ− kη > 0 and D = K̃η−1−τ for K̃, E numbers that

depend on the system, the invariant surface, the dimension and ω.

Proof. Using induction, the hypothesis holds for m = 1. Assuming that all H{m}’s are
determined completely up to order m − 2 and up to an additive constant for H{m−1}

and satisfy the bounds in the assumption we have

sup
‖A‖d≤η/2V
Tδ−(m−1/2)η

|H{m−j}(φ + ω + Av(φ,A)| ≤ ‖H{m−j}‖δ−(m−1)η ≤ ‖H{m−j}‖δ−jη

where V = supTδ
|v(φ,A)|.

Using Cauchy estimates to bound derivatives with respect to A (see [PW94] for a
justification of Cauchy estimates for the case of max norms in |Cd) we have

sup
‖A‖d≤η/2V
Tδ−(m−1/2)η

∣∣∣∣ 1
{j}!

(
∂

∂A

){j}
H{m−j}(φ + ω + Av(φ,A))|A=0

∣∣∣∣ ≤ ‖H{m−j}‖δ−jη

(2V )j

ηj



18 S. Tompaidis

and

sup
‖A‖d≤η/2V
Tδ−(m−1/2)η

∣∣∣∣ 1
{j}!

(
∂

∂A

){j}
(A + A{2}u(φ,A)){j}|A=0

∣∣∣∣ ≤ 1
ηj

From the above estimates we deduce

‖L1
{m}‖δ−(m−1/2)η ≤ Dm−1E

4V

η

‖L2
{m}‖δ−(m−1/2)η ≤ Dm−1E

2
η

From the condition (3.5)

‖H̄{m−1}‖ ≤ EDm−1

for η fixed and E large enough.

Using Lemma 3.4 and fixing η ≤ δ/2k we have

‖H̃m‖δ−mη ≤ EDm−1K̃η−1−τ ≤ EDm

which concludes the induction.

To conclude the proof of Theorem 2.2 we fix η = δ/2k and have Ck ≤ K̃
(

k
δ

)k(1+τ)

and, using a simple maximization argument over k,

max
k∈IN

(
k

δ

)k(1+τ)

Bk ≤ exp[−(1 + τ)B−1/(1+τ)δe−1]

Letting B = ‖Nω − P‖1/2
d concludes the proof of Theorem 2.2.

Remark. Theorem 2.2 is also valid for the case of complex maps with complex invariant
surfaces, as long as the non-degeneracy condition (ii) is satisfied in a neighborhood of
the invariant surface.
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3.3. The quasi-periodic skew-product case

The proof for the case of a quasi-periodic perturbation of a symplectic map is
similar to the proofs of Theorem 2.1 and Theorem 2.2. We sketch the proof (referring
to the proofs in sections 3.1 and 3.2) and emphasize the differences.

We study invariant sets of maps f : TTd+e × IRd → TTd+e × IRd on which motion is
conjugate to rigid rotation with rotation vector ω = (ω1, ω2), (ω1 ∈ TTd, ω2 ∈ TTe), with

f(φ1, φ2, A) = (f1(φ1, φ2, A), φ2 + ω2)

where f1 : TTd+e × IRd → TTd × IRd and f1(·, φ2, ·) is symplectic.

The first part of the proof consists of constructing a normal form for f in a neigh-
borhood of the invariant surface with rotation vector ω. As in Proposition 3.1 we can
find a map h, defined in a neighborhood of the invariant surface, such that

h ◦ f ◦ h−1(φ1, φ2, A) = (φ1 + ω1 + A1v(φ1, φ2, A1), φ2 + ω2, A1 + A2
1u(φ1, φ2))

with v(φ1, φ2, 0) 6= 0.

We can now construct d approximate integrals for f in a neighborhood of the
invariant surface, by expanding and matching by orders as in Lemma 3.2. The difference
at this point is that not only the properties of ω1 (the rotation vector for the symplectic
coordinates) but also the combined properties of ω1 and ω2 are important.

After constructing the approximate integrals, we perform a transformation (us-
ing a generating function in the “symplectic” coordinates, identity in the remaining
coordinates) to substitute the approximate integrals for the original “actions”.

The normal form for f in a neighborhood of the invariant surface is

f(Φ1, φ2, Ã1) = (Φ1 + ω1 + Ã1∆(Ã1), φ2 + ω2, Ã1) + (E1(Φ1, φ2, Ã1), 0e, E2(Φ1, φ2, Ã1))

where ∆(0, ω2) 6= 0 and ‖E1,2‖ ≤ Ck‖Ã1‖
k+1
d in appropriate norms.

Instead of studying the normal form for f itself we will study the extension f∗ :
TTd+e × IRd+e → TTd+e × IRd+e with

f∗(Φ1, φ2, Ã1, A2) =(Φ1 + ω1 + Ã1∆(Ã1), φ2 + A2, Ã1, A2)

+ (E1(Φ1, φ2, Ã1), 0e, E2(Φ1, φ2, Ã1), 0e)
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The map f∗ is also area preserving and, for A2 ≡ ω2, motion in the Φ1, φ2, Ã1

coordinates under f∗ is identical to motion in the Φ1, φ2, Ã1 coordinates under f . The
map f∗ has the advantage that in a neighborhood of an invariant surface with rotation
vector of type (K, τ) one can find periodic orbits (by simply changing A2 to nearby
rational numbers).

The bounds on the eigenvalues of the derivative follow from Lemma 3.3. The 2e

eigenvalues corresponding to rotation in the φ2, A2 coordinates are identically 1.

Following arguments similar to section 3.2 we can also reproduce the proof for the
analytic case. This concludes the proof of Theorem 2.4.

Remark. In the case of a general volume-preserving map f : TTd × IR → TTd × IR
under conditions similar to the ones in Theorem 2.4 it is possible to construct one
approximate integral in the neighborhood of the invariant surface. However no result
similar to Theorem 2.4 is possible, since we have no control for the motion along the
angle coordinates, similar to what we have for the symplectic skew-product case.

4. Conclusions

Our results in Theorem 2.1, Theorem 2.2 and Theorem 2.4 suggest that the eigenvalues
of the derivative of a symplectic map along a periodic orbit, are in higher dimensions
an analog of the residue (as used in Greene’s criterion for two-dimensional twist maps
– for a justification and an application of Greene’s criterion in the case of a particular
dissipative map see [LT94]). Based on this analogy the following, efficient, numerical
algorithm can be implemented to indicate existence of a close-by invariant surface.
• Compute periodic orbits with rotation vectors close to the rotation vector of an in-
variant set of interest.
• Check whether the periodic orbits computed stay within a small neighborhood in
phase-space.
• Compute the eigenvalues of the derivative of the map along the periodic orbits.
• If all the eigenvalues approach 1 as the rotation vector of the periodic orbit approaches
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the rotation vector of the sought-for invariant set, existence is indicated. If on the other
hand the distance from the eigenvalues to 1 increases, we have a numerical indication
for the non-existence of the invariant surface.

Since convergence to the limit behavior (either 1 for the case of an invariant surface
or ∞ for the case of a uniformly hyperbolic invariant set) is exponentially fast, relatively
low-period orbits can be used. In a separate paper we implement such an algorithm for
the case of a quasi-periodic excitation of a two-dimensional symplectic map (see [T96]).

Periodic orbits can also be used (see [Gr79, McK82]) to investigate behavior at
breakdown. If transition can be described in terms of a fixed point of a renormalization
group operator with a co-dimension one stable manifold, the eigenvalues of the periodic
orbits scale with the period of the orbit and the distance from breakdown. Recently,
Kosygin constructed a renormalization group operator and showed that if, under re-
peated action of the operator, the map converges to a – trivial – fixed point, then the
original map admits an invariant surface (see [Kos91]). No such description is known for
the behavior at breakdown. Numerical studies and analytical arguments suggest that
if such a renormalization operator exists, there are regions in parameter space where
behavior at breakdown is governed by dynamics more complex than a simple fixed point
(see [MMS94, ACS91, T96]).

Another interesting problem is to determine the existence of lower-dimensional
hyperbolic tori on which motion is conjugate to rigid rotation with a resonant rotation
vector. One can separate phase space in the neighborhood of the low-dimensional torus
to the center manifold of the torus and the hyperbolic directions. Arguments similar to
the ones we used in this paper can be used to show that along the center manifold the
map is close to an integrable normal form. Along the hyperbolic directions behavior
can be described using arguments similar to [FL92]. The natural result appears to
be that 2d∗ eigenvalues (where d∗ the dimension of the low-dimensional torus) of the
derivative of the map along periodic orbits will approach 1, while the rest will approach
eλiT where λi the non-zero Lyapunov exponents of the orbits on the low-dimensional
torus and T the period. Unfortunately a numerical algorithm to estimate domains of
existence of lower dimensional hyperbolic tori, would be difficult to implement, since we
can not numerically isolate the eigenvalues that tend to 1, from eigenvalues that become
exponentially large.
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