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The field of corporate finance has a rich tradition of exploring the link between firm-

specific stock returns and various firm attributes in the context of significant events like

regulatory changes or political developments.1 This cross-sectional event study methodology

holds considerable promise for validating economic theories, and its findings frequently in-

form policy debates and legal discussions. Nevertheless, there is a persistent concern about

its propensity to produce Type I errors. This issue arises because firms sharing similar traits

often also share exposure to other, unrelated events, leading to potentially misleading as-

sociations between event-period returns and firm characteristics. Although this problem is

understood theoretically (Sefcik and Thompson, 1986), its actual significance in practical

scenarios remains unknown. This uncertainty complicates evaluation of cross-sectional event

study methodology’s dependability.

In this study, we leverage daily stock return data at the firm level, spanning from 1991

to 2021, to evaluate the frequency of Type I errors in cross-sectional event studies. Our

methodology involves examining the significance of the connection between stock returns

and a variety of firm characteristics – some of which are subjects in existing cross-sectional

event studies – on a day-to-day basis. This technique enables us to estimate Type I error rates

under the assumption that the particular event under investigation does not influence the

relationship between returns and a given characteristic. We propose that this null hypothesis,

rather than a null of no cross-sectional relationship on the event day, is the actual target

of research inquiries. Indeed, it is the possibility of statistically significant cross-sectional

relationships on many days that potentially confounds significance testing in cross-sectional

event studies.

Our evidence suggests that the cross-correlation problem is severe: For typical covariates,

coefficients are statistically significant at the 1% level on more than 20% of the days in

our sample period. The problem is especially acute for covariates closely related to firm
1The first such study we are aware of is Leftwich (1981).

1



fundamentals (e.g., firm size and book-to-market ratio), where significance rates at the 1%

level can exceed 50%. Our estimates suggest that inflating event-period return regression

standard errors 2 to 3 times would be necessary to restore the Type I error rate to the intended

size of the test. While clustering standard errors by industry, location, or other dimension

can help, tests based on clustered standard errors still typically result in significance at the

1% level on more than 10% of days, with rates exceeding 30% for covariates closely related to

firm fundamentals. Overall, clustering standard errors appears to be an inadequate solution

to the cross-correlation problem in cross-sectional event studies.

Motivated by concerns about excess Type I errors, Sefcik and Thompson (1986) proposes

testing the statistical significance of the relationship between returns and a characteristic on

the event day by comparing the absolute magnitude of that relationship to the magnitude

of the same relationship on a series of days prior to the event (“pre-event days”).2 The logic

behind this approach is that we should only confidently attribute a relationship on the event

day to the event itself if the relationship on that day is exceptional in the sense that its

magnitude is larger than the magnitude of the same relationship on most other days. If it is

not, then it is hard to rule out the possibility that the observed event-day relationship would

have occurred by chance, even absent the event. This approach, which we refer to as “time-

series OLS,” sidesteps concerns about correlated exposure to other events because these

exposures should be reflected in the distribution of observed non-event day relationships

as well. Yet, adoption of this alternative approach to statistical testing remains limited.

We find in an informal survey of papers employing cross-sectional event studies involving a

single event appearing in top-3 finance journals in the last ten years that only 13% use this

approach.3

2Sefcik and Thompson (1986) shows that this test can be implemented using a portfolio approach. We
abstract away from this specific implementation for the sake of providing a more intuitive explanation of the
approach.

3Of the 87% that use conventional regression standard errors to conduct statistical tests, 35% report
unadjusted standard errors; 25% report robust standard errors, which address concerns about heteroskedas-
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As with tests based on cross-sectional regression standard errors, we estimate the fre-

quency of Type I errors using a time-series OLS approach by computing the fraction of days

with statistically significant relationships between 1991 and 2021. We show that this fre-

quency is approximately correct, with one note of caution. The distributions of relationships

between daily returns and most characteristics are generally fat-tailed, causing a t test to find

statistically significant relationships slightly too often (2-4% at the 1% significance level). In

contrast, a p-value approach akin to bootstrapping, based on comparison to the empirical

cumulative density function (CDF) of pre-event day relationships, ensures approximately the

correct frequency of statistically significant relationships.

While time-series OLS addresses concerns about excess Type I errors, there are concerns

about its statistical power (e.g., Chandra and Balachandran, 1992). We assess the power of

this approach by adding relationships between returns and firm characteristics on artificial

event dates and then determining how frequently time-series OLS detects these relationships

at a statistically significant level. We find some support for concerns about power. Time-

series OLS detects an added return of 50 basis points per one standard deviation change in a

characteristic at the 5% significance level more than 75% of the time for many characteristics.

However, detection rates drop to close to 50% for characteristics such as size and book-to-

market ratio that are closely linked to firm fundamentals. Intuitively, these relationships

are harder to detect for the same reason that they are subject to frequent Type I errors in

tests based on cross-sectional regression standard errors: realized returns are meaningfully

related to these characteristics on many days, making it difficult to tease out a relationship

associated with any specific event.

One might argue that we should continue to rely on cross-sectional regression standard

errors to conduct statistical testing at least in some cases given concerns about the power of

ticity but not cross correlations; 35% report standard errors clustered by industry; and 5% report standard
errors clustered by geographic location.
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the time-series OLS approach. However, this logic is misleading. Using cross-sectional re-

gression standard errors may result in higher rates of statistical significance. However, it will

do so largely by producing Type I errors. The abundance of Type I errors makes it impossi-

ble to determine how much information a statistically significant coefficient actually conveys

about the differential effect of an event on firms with different characteristics. Nevertheless,

concerns about power are important, as many event-induced relationships between returns

and characteristics may be modest in magnitude. With that concern in mind, we introduce

a new approach, which we call “time-series GLS,” that substitutes feasible generalized least

squares (GLS) for OLS to estimate both event-day and non-event day relationships.

GLS uses the inverse of an estimated covariance matrix of regression errors to weight

observations, potentially increasing power by downweighting pairs of observations whose

errors are more correlated and which therefore provide less independent information about

the relationship in question. Our approach uses principal component analysis (PCA) of

daily returns to encode information about return correlations into the estimated covariance

matrix. In asset pricing parlance, we model the covariance between individual stock returns

as arising from common exposures to latent factors, which we extract from return data using

PCA, following Giglio and Xiu (2021) and Lopez-Lira and Roussanov (2023).4 This approach

allows us to capture information about return correlations along many dimensions without

needing to specify those dimensions a priori. More precise estimates of both event-day and

pre-event day relationships should make it easier to detect a relationship specific to the event.

We show that, like time-series OLS, time-series GLS produces approximately the correct

rate of Type I errors. However, time-series GLS outperforms time-series OLS in terms

of power by a wide margin in many cases, especially when the effect would otherwise be

difficult to detect. For example, it detects a relatively small relationship of 25 basis points of
4Richer machine learning approaches, for example those in Kelly et al. (2019) or Lettau and Pelger (2020),

are needed to identify which factors are “priced” in the sense that they explain differences in expected, rather
than realized, returns. However, our objective is not to identify priced factors.
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additional return per one standard deviation change in a characteristic at the 5% significance

level 1.2-2.9 times as often as time-series OLS. The additional power may make it feasible to

test for differences in returns associated with an event that would otherwise be impossible

to test with any reliability. To make implementing the time-series approaches easier, we

provide a turnkey Stata module (csestudy) that implements both.5

Finally, we shed light on the nature of return cross correlations and why clustering is

not more effective at correcting standard errors by examining the principal components

(PCs) that we use in our time-series GLS implementation. Our analysis shows that cross-

correlation patterns reflected in the PCs are complex and not well-captured by membership

in common cross-sectional groups such as industry or location, which explains why cross-

sectional clustering strategies are not more effective. Like Lopez-Lira and Roussanov (2023),

we find that many PCs are required to summarize the cross-sectional variance in returns and

are difficult to map to traditional factors related to expected returns such as those in Fama

and French (2015). We additionally find that the return factors captured by the first few

PCs vary considerably over time and are often period-specific.

The high frequency and low serial correlation of returns allows us to estimate excess

Type I error rates in cross-sectional event studies of returns. Researchers also often conduct

cross-sectional event studies of longer-term outcome variables such as capital investment or

profitability, frequently using difference-in-differences methodology. While this methodology

accounts for differences in means between treatment and control groups before the event,

it does not account for a lack of within-group independence due to common exposure to

other events. While we cannot readily estimate Type I error rates for these outcomes, we

have every reason to believe that correlated exposures to confounding events are just as

much a problem with longer-term outcomes as with returns. This possibility points to an

advantage of analyzing returns rather than longer run outcomes around an event: approaches
5https://github.com/MalcolmWardlaw/csestudy
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that reliably account for correlated exposures to other events are feasible when the outcome

variable is returns.

Our paper contributes to the literature on practical issues in computing standard errors

when regression errors are not I.I.D. Several papers show that clustering can substantially

alter standard errors (Moulton, 1986, 1987; Bertrand et al., 2004). Petersen (2009) shows

that, in finance, the Fama and MacBeth (1973) procedure may be preferable to clustering

by firm in panel data when cross-sectional clustering is more important than time-series

clustering. The time-series approach we describe is close in spirit to the Fama-MacBeth

approach. Abadie et al. (2023) considers flexible approaches to modeling error structure and

shows that clustering at too high a level can result in severely inflated standard errors and

hence low statistical power. In contrast, our evidence suggests that standard errors can be

severely deflated due to cross-correlated model errors, even when clustering standard errors

cross-sectionally.

Our paper also contributes to the literature on event study analysis of returns. The

literature has primarily explored the challenges that return cross correlations create for

inference in studies of abnormal mean event returns (Collins and Dent, 1984; Bernard, 1987;

Lyon et al., 1999; Brav et al., 2000; Mitchell and Stafford, 2000; Jegadeesh and Karceski, 2009;

Kolari and Pynnönen, 2010). We are not aware of any prior analysis of the practical challenge

caused by return cross correlations for cross-sectional analysis of returns around an event.6

Sefcik and Thompson (1986) describes this challenge conceptually but do not assess its

practical importance in real-world applications. The time-series approach that they propose

has largely been ignored. Our analysis suggests that care must be taken in implementing

time-series approaches to avoid excess rejection due to fat tails in the distribution of return-

characteristic relationships. In addition, we propose a more efficient GLS estimator and

resolve the practical issues in implementing such approaches by providing a turnkey Stata
6See Kothari and Warner (2007) for a survey of the literature on the econometrics of event study analysis.
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module.

1. Conceptual Framework and Econometric Approaches

This section presents various approaches to estimating the cross-sectional effect of an

event on stock returns. We begin by presenting a general framework describing cross-sectional

event study analysis and some practical considerations.

Suppose that stock returns are a function of firm characteristics and random noise, and

that the relation between returns and firm characteristics varies period-by-period depending

on the news that arrives. An example firm characteristic is a firm’s market capitalization.

Even though the average relationship between daily returns and market capitalization is

near-zero, news arrives on some days that meaningfully and statistically increases the value

of large cap firms relative to small cap firms, leading to a positive cross-sectional relation

between size and returns on those days. On other days, the news leads to the opposite

relation.

We formalize this data generating process as follows:

ri,t = λ′xi,t−1 + δi,t, (1)

where xi,t−1 is a K × 1 vector of firm characteristics observed prior to t that includes a

constant, λ is a K × 1 vector containing each characteristic’s relation with average returns,

and the residuals satisfy:

δi,t =
(

nt + eτ

Nτ

1(t ∈ τ)
)′

xi,t−1 + νi,t, (2)

E(nt) = E(νi,t) = E(xi,t−1νi,t) = 0, (3)

Var(νi,t) = Ων . (4)
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The vector nt contains mean-zero random variables expressing the news arriving in period t

in terms of its impact on returns as a function of firm characteristics. The total incremental

effect of xi,t−1 on ri,t due to the event occurring during “event window” τ , our coefficients of

interest, are in the vector eτ . Nτ is the number of days in τ .

This framework features two distinct sources of correlations in unexpected returns δi,t.

The first is that firms with similar characteristics xi,t−1 have correlated returns due to com-

mon exposure to news arrival. The second is that the part of returns orthogonal to xi,t−1,

νi,t, may still have some cross-correlations due to omitted firm characteristics or a latent

factor structure. These latter correlations are reflected in the off-diagonal elements of Ων .

One important consideration in cross-sectional event study analysis is the choice of an

event window. This window represents the period of time over which market participants

becomes aware of the event. In some cases, the market becomes aware of the event at a

discrete, well-defined point in time. In these cases, the event window is typically a single

day. In other cases, the exact time at which the market becomes aware of the event is less

clear, and an event window of a few days may be appropriate. Researchers also sometimes

study longer event windows, with the idea that either the event itself unfolds slowly over

time or the market needs time to fully digest the repercussions of the event. For example,

studies of the cross section of returns in the early stages of the COVID-19 pandemic often

focus on periods of approximately one month starting sometime in March 2020.

1.1. Cross-sectional OLS estimates

The standard methodology to estimate eτ and conduct hypothesis tests, which we refer

to as cross-sectional OLS, uses an OLS regression of event period returns on a vector of

firm characteristics xi,τ−1, including a constant, variables of interest, and controls:

∑
t∈τ

ri,t = b′
τ xi,τ−1 + ϵi,τ , (5)
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where xi,τ−1 are characteristic values observed prior to the beginning of the event window

τ .7 In this subsection, we show that while any bias in b̂τ as an estimate of eτ (the object of

interest) is likely to be tiny, conventional standard errors for b̂τ may significantly understate

the estimation error in eτ .

The conceptual challenge in conducting hypothesis testing on the b̂τ coefficients is that

regression errors ϵi,τ in returns are likely to be both heteroskedastic and cross-sectionally

correlated. These features generally make default standard errors from OLS estimation of

Eq. (5) incorrect. Cross-sectional correlation in particular is likely to make standard errors

too small, since firms that are similar on observable characteristics are likely exposed to

similar economic forces in general and therefore to experience positive comovement in stock

prices. Put differently, any correlation between returns and firm characteristics in the event

window may simply reflect more general co-movement in the returns of firms with similar

characteristics that would have occurred even absent the event.

To address these concerns, many recent cross-sectional event studies report either White

(1980) adjusted standard errors, which account for heteroskedasticity, or industry-clustered

standard errors, which account for both heteroskedasticity and cross-sectional correlation in

errors within industry. However, White-adjusted standard errors do not account for cross-

correlations at all, and it is unclear whether clustering at the industry level adequately

accounts for cross correlations. More generally, clustering at any group level requires speci-

fying a group structure a priori, which requires knowing the important dimensions on which

returns cluster. Given the complexity of return correlations, it is unclear whether any pre-

specified group-level clustering is adequate.

We formalize these conceptual issues in the context of the above data generating process.

Substituting Eq. (2) into Eq. (1) and assuming characteristics xi,t are constant for each i

7The outcome variable is also often the average or cumulative buy-and-hold return in the event window
τ , both of which face same issues we identify here.
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during the event window, we have:

ri,t =
(

λ + nt + eτ

Nτ

)′

xi,t−1 + νi,t ∀ t ∈ τ, (6)

⇒
∑
t∈τ

ri,t =
Nτ λ +

∑
t∈τ

nt + eτ

′

xi,τ−1 +
∑
t∈τ

νi,t, (7)

which implies that in the population (with no estimation error):

bτ = eτ + Nτ λ +
∑
t∈τ

nt, (8)

ϵi,τ =
∑
t∈τ

νi,T . (9)

Proposition 1 (Bias and excess variance of the cross-sectional OLS approach). Cross-

sectional OLS estimates of bT in Equation (5) have the following relations to the true event-

specific effect eT :

E(b̂τ − eτ ) = Nτ λ︸ ︷︷ ︸
bias

, (10)

Var(b̂τ − eτ ) = Nτ

[
Var(b̂τ − bτ ) + Nτ Var(nt)

]

= Nτ

(X ′X)−1(X ′ΩνX)(X ′X)−1︸ ︷︷ ︸
Correlation-corrected OLS variance

+ Var(nT )︸ ︷︷ ︸
News variance

 , (11)

where X is an N × K matrix stacking all the x′
i,τ−1 vectors. The E(·) and Var(·) operators

condition on xi,τ−1 and draw random νi,t and nt for all t ∈ τ .

Proofs are in Appendix A.

In words, Proposition 1 shows that using cross-sectional OLS estimates of bτ to measure

eτ may result in bias and is likely to understate sampling error. Any relationship between the

firm characteristics and average returns (λ ̸= 0) will bias bτ relative to eτ . In practice, this
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effect is likely to be extremely small for daily event windows (Nτ = 1) because differences

in average daily returns as a function of firm characteristics are dwarfed by return volatility.

For larger event windows, especially those greater than a month, this bias could have a larger

impact.

The more important result in practical settings is that the estimation error in b̂τ relative

to eτ – the key to statistical inference – is likely to be inflated for two reasons. First, residuals

in each day t ∈ τ (νi,t) may have cross-correlations due to news unrelated to xi,τ−1. This

manifests in the Ων term in Eq. (11), and can in principle be corrected by using cluster-

robust standard errors. In practice, however, these clusters may miss important cross-cluster

correlations. Second, the news that would have arrived without the event, ∑t∈τ nt, drives

a wedge between the true bτ and eτ that would remain even in an infinite sample without

estimation error. This effect always increases Var(b̂τ −eτ ) and cannot be corrected using any

standard methodology such as clustering that focuses on estimating the correct Ων . Like the

bias in b̂τ , the variance increases in Nτ , meaning longer event windows result in less-precise

estimates of eτ , making it only possible to reliably detect economically large effects.

1.2. Time-series OLS estimates

An alternative approach to hypothesis testing in cross-sectional event study analysis,

pioneered by Sefcik and Thompson (1986), is to use the cross-sectional regressions in non-

event periods to approximate the distribution of b̂ under the null hypothesis. We refer to

this approach as time-series OLS (TS-OLS for short).8 The detailed procedure is:

1. Estimate single-day cross-sectional regressions:

ri,t = b′
txi,t−1 + ϵi,t, (12)

8Sefcik and Thompson (1986) shows that this approach is tantamount to forming portfolios with weights
determined by the distribution of the explanatory characteristics and then comparing portfolio returns in
and out of the event window. This approach is therefore sometimes referred to as “Portfolio OLS.”
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for a sample of all days in the event window and L days spanning both the event

window τ and a set of pre-event windows τ−1, τ−2, . . ., τ−L, each of the same length as

the event window.9

2. Estimate the event-specific effect as:

êTSOLS
τ = b̂τ − 1

L

L∑
l=1

b̂τ−l
, (13)

b̂τ =
∑
t∈τ

bt, b̂τ−l
=

∑
t∈τ−l

bt (14)

3. Calculate the standard error and p-value for êTSOLS
τ using the distribution of estimated

b̂τ−l
across pre-event windows.

This approach implicitly treats the non-event window coefficients as draws from a placebo

data-generating process that is comparable to the event-window data-generating process but

without any differential treatment effect associated with the event.

A standard error based on the time-series of non-event coefficients maps neatly into

the textbook definition of a standard error as “a measure of the statistical accuracy of an

estimate, equal to the standard deviation of the theoretical distribution of a large population

of such estimates.”10 Under the assumption that return cross correlations are time-invariant,

this approach fully accounts for any cross-correlations by using a benchmark for hypothesis

testing that also reflects the effects of cross correlations. Note also that this approach is

similar to the Fama and MacBeth (1973) methodology in asset pricing, and, for a binary

characteristic, is effectively a difference-in-differences approach.

To formalize the intuition for TS-OLS, note that outside the event window the return
9In principle, one could use a post-event window period instead. However, a pre-event window is less

likely to include any post-announcement drift or follow-on events that muddy the coefficients interpretation
as unrelated to the event in question.

10Source: https://doc.sitespect.com/knowledge/sitespect-statistics
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generating equation (1) simplifies to:

ri,t = (λ + nt)′xi,t−1 + νi,t. (15)

If we estimate the regression in Eq. (5) in a non-event window τ−l, we therefore have:

bτ−l
= Nτ λ +

∑
t∈τ−l

nt, (16)

⇒ E(b̂τ−l
) = Nτ λ, (17)

Var(b̂τ−l
) = Nτ

[
Var(b̂τ−l

− bτ−l
) + Nτ Var(nt)

]
. (18)

This leads to Proposition 2, which specifies the TS-OLS approach and shows the distribution

of estimates based on it in the population.

Proposition 2 (Unbiasedness and correct variance of the time-series OLS approach). As-

suming stationary distributions for estimation error b̂τ−l
− bτ−l

and news nt, êTSOLS
τ has the

following relations to the true event-specific effect eτ :

E(êTSOLS
τ − eτ ) = 0︸︷︷︸

No bias

, (19)

Var(êTSOLS
τ − eτ ) = Var(b̂τ−l

)︸ ︷︷ ︸
Time-series variance

, (20)

Φ(êTSOLS
τ − eτ ) = Φ(b̂τ−l

)︸ ︷︷ ︸
Time-series CDF

, (21)

where Φ(x) is the cumulative density function evaluated at x.

There are two sub-approaches to testing the significance of event-window coefficients using

the non-event window time-series. The first leverages Eq. (20) and computes a t-statistic
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for element j of coefficient vector b as follows:

t̂j ≡
êTSOLS

j,τ√
Var(êTSOLS

j,τ − ej,τ )
=

b̂τ − 1
L

∑L
l=1 b̂τ−l√

Var(b̂τ−l
)

. (22)

One can then compare t̂j to critical values from the standard normal, Student’s T, or other

cumulative distribution function. This approach is identical to estimating a second-stage

regression of the time-series of coefficients b̂j,τ−L
, . . . , b̂j,τ−1 , b̂j,τ on a constant and an indicator

for the true event window. The coefficient on the indicator equals b̂τ − 1
L

∑L
l=1 b̂τ−l

while the

standard error equals
√

Var(b̂τ−l
) when a small-sample correction is applied to the variance.

t̂j is therefore the standard t-statistic for this second-stage regression.

A second sub-approach is to compute a p-value based on the empirical cumulative distri-

bution function (CDF) of the pre-event day coefficients - i.e., the empirical counterpart to

(21). Formally, this p-value is

p̂j = 1
L

 L∑
l=1
1

(∣∣∣b̂j,τ−l
− µ(b̂j)

∣∣∣ >
∣∣∣b̂j,τ − µ(b̂j)

∣∣∣)
 , (23)

µ(b̂j) ≡ 1
L

L∑
l=1

b̂j,τ−l
. (24)

The advantage of this approach over the first is that it imposes no distributional assumptions

on the time series of the cross-sectional coefficients. The disadvantage is that it produces only

p-values and not standard errors, though standard errors can be inferred from the p-values

with the addition of a distributional assumption.

Another small disadvantage of this approach is that p̂j only has the correct test size under

the null, in the sense that P(p̂j ≤ p∗) = p∗, when L + 1 is divisible by 1
p∗ . Under the null,
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the expected rejection rate is

P(p̂j ≤ p∗%) = ⌈p∗ · (1 + L)⌉
(1 + L) , (25)

where ⌈·⌉ is the ceiling function that rounds up to the nearest integer.11 Because the critical

values we care about in practice include 1%, we need L to be one less than a multiple of 100.

One practical consideration in implementing this approach is the length of the pre-event

window period to use as a benchmark. There is a tradeoff here. A longer pre-event window

affords a larger sample of pre-event window coefficient observations to use in inference, but

it also increases the risk posed by time-varying return correlations. Instability of return

correlations between the event window and pre-event window periods weakens the rationale

for using the pre-event window period as a benchmark for hypothesis testing. Nevertheless,

even if return correlations change over time, using the time-series of regression coefficients

as a benchmark is almost certainly better than ignoring information about the distribution

of return correlations contained in pre-event windows. In our analysis, we use a 199-trading

day (approximately 10 months) pre-event window period, which seems like a reasonable

compromise in terms of period length and satisfies Eq. (25) for p∗% = 1%.

Another practical consideration is when to measure the characteristics in xτ if these

characteristics are time-varying. To avoid look-ahead bias, the characteristics should always

be measured prior to a given (event or pre-event) window τ . One option is to use the

characteristics measured on the most recent available date prior to the earliest pre-event

window. While this approach is simple, it may be inefficient if characteristics change over

time. The other option is to measure the characteristics as of the most recent available date

prior to the beginning of the event window and each pre-event window, using more recent
11Suppose L = 252 and the cross-sectional coefficients b̂ are i.i.d. in both the pre-event and event window.

In this case, p̂j ≤ 1% only when the event-window effect is in the top three of the 253 estimated coefficients.
However, P(p̂j ≤ 1%) = 3

253 > 1%, and thus the test will not have the correct size due to the discreteness of
the placebo periods.
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information where available for more recent windows. For example, if characteristic j is an

annual financial variable, then xijτ would be the value of xj for firm i as of the most recent

fiscal year end prior to the start of window τ . Given the potential efficiency gain, we adopt

this latter approach in our analysis.

1.3. Time-series GLS

One disadvantage of TS-OLS is that it does not exploit information about cross cor-

relations that might allow for more efficient estimates and hence greater statistical power.

Statistical power is critical in testing the cross-sectional return effects of an event, as many

events would be expected to produce only moderately large cross-sectional differences in

returns, making it difficult to distinguish differences in returns attributable to an event from

noise. We propose a more powerful alternative to TS-OLS that we call time-series GLS

(TS-GLS for short). Like TS-OLS, this approach uses the time series of cross-sectional co-

efficients from pre-event window regressions to conduct hypothesis testing. However, it uses

GLS rather than OLS to estimate these cross-sectional regressions.

GLS achieves efficiency gains relative to OLS by using the inverse of the covariance ma-

trix of the regression errors to weight observations. Because the diagonal elements of the

covariance matrix measure the variance of the errors, this weighting addresses concerns about

heteroskedasticity by down-weighting observations with high-variance errors. Because the

off-diagonal elements measure the cross-sectional covariance among errors, this weighting also

addresses concerns about correlated errors by down-weighting observations with correlated

errors. Intuitively, the more correlated the errors of two observations, the less independent

information they contain, making them less informative. More efficient cross-sectional esti-

mates of both event-window and pre-event window coefficients should make tests based on

TS-GLS more powerful than those based on TS-OLS.

In our setting, it is important that the GLS approach account for return comovement
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orthogonal to x (Ων in the specification above) and comovement due to latent news arrival

causing day-to-day variation in the relation between x and returns (nt in the specification

above). We do so by using the covariance matrix of demeaned returns in implementing GLS.

Estimating every element of the return covariance matrix individually is generally infea-

sible, as doing so with fewer days of data than firms in the sample produces a rank-deficit

matrix that cannot be used for OLS. Even if a long enough time-series of returns were avail-

able, attempting to estimate every element of the covariance matrix would likely result in

overfitting, potentially making GLS less efficient than OLS. Instead, we follow Giglio and

Xiu (2021) and capture the important quanta of return covariation using principal compo-

nent analysis (PCA), using the principal components (PCs) to construct an estimate of the

covariance matrix.12

Writing fkt as the realization of the kth principal component on day t, we specify the

covariance matrix of returns by assuming an arbitrage pricing theory (APT) structure:

rit = ϕi +
K∑

k=1
λikfkt + ϵit, (26)

Cov(ϵit, ϵjt) =


σ2

i when i = j

0 when i ̸= j

. (27)

Given this structure, we can estimate the elements of the covariance matrix of returns as:

Ω̂r,ij ≡ Cov(rit, rjt) =
K∑

k=1
λikλjkVar(fkt) + 1(i = j)σ2

i (28)

Note that rather than specifying factors ex ante, as is common in asset pricing, we use

PCA to construct these factors. Our objective is not to explain the cross section of returns

using economically meaningful factors but rather to estimate covariances as accurately as
12While most readers will be familiar with PCA, we provide a simple primer on PCA in Appendix B. See

Appendix C for an explanation of why we use PCA instead of a machine-learning based technique.

17



possible. It therefore better to allow the data to determine the factors rather than imposing

them ex ante. As we will see in Section 3, the first constructed factor is effectively the

market factor by construction, but the remaining constructed factors overlap little with

other standard asset pricing factors, and the factors with which they overlap vary over time.

Putting the pieces together, the steps for conducting time-series GLS are:

1. Estimate Ωr, the covariance matrix of de-meaned returns, as specified in Equation (28)

with latent factors from PCA on a sample of past daily returns demeaned by firm.

2. Estimate single-day cross-sectional using GLS regressions:

ri,t = b′
txi,t−1 + ϵi,t, (29)

b̂GLS
t = (X ′

t−1ΩrXt−1)−1X ′
t−1ΩRt, (30)

where Xt−1 is a matrix containing all xi,t−1 and Rt contains all ri,t, for a sample of all

days in the event window and L days spanning both the event window τ and a set of

pre-event windows τ−1, τ−2, . . ., τ−L, each of the same length as the event window.

3. Estimate the event-specific effect as:

êTSGLS
τ = b̂GLS

τ − 1
L

L∑
l=1

b̂GLS
τ−l

, (31)

b̂GLS
τ =

∑
t∈τ

b̂GLS
t , b̂GLS

τ−l
=

∑
t∈τ−l

bGLS
t (32)

4. Calculate the standard error and p-value for êTSGLS
τ using the distribution of estimated

b̂GLS
τ−l

across pre-event windows.

One practical consideration when implementing TS-GLS is the number of PCs to use

in constructing the covariance matrix. The number of PCs can be any whole number be-

tween 0 and T . Using 0 PCs is equivalent to using WLS rather than GLS to estimate the
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cross-sectional return regressions and accounts for heteroskedasticity but not for return cor-

relations. Using more PCs allows for more precise estimates of the return covariances. This

increased precision should increase the efficiency of cross-sectional estimates and hence of

estimates using the TS-GLS approach, at least up to a point. However, beyond a certain

point, adding more PCs results in over-fitting, which can reduce efficiency.

To gain insight into the optimal number of PCs to use, we analyze the relationship be-

tween the number of PCs K and the variance of the minimum variance portfolio constructed

using an ex-ante estimate of the covariance matrix for returns Ω based on PCA, as specified

in equation (28).13 Given an estimated covariance matrix for returns on t, Ω̂t, the minimum

variance portfolio’s weights wmvp,t are specified by

wmvp,t = Ω̂−1
t 1

1′Ω̂−1
t 1

, (33)

where 1 is a vector of ones, and the denominator assures that the wmvp,t sums to one.

The relation between K and the volatility of the minimum variance portfolio is infor-

mative about the incremental information content of each additional PC for forecasting the

inverse of the next-day covariance matrix – exactly the object we use for GLS. Figure 1 plots

this relationship. The variance of the minimum variance portfolio decreases sharply with

the addition of first several PCs. The variance flattens out around 50 PCs and is largely

invariant until K = 199.

[Figure 1 about here]

In the spirit of choosing a round number, we use 100 PCs in the remainder of the analysis

and recommend this as the default number of PCs. However, the results are virtually

unchanged if we use any number of PCs between 50 and 195. At the end of Section 2,
13Clarke et al. (2006) shows that using PCA to estimate the covariance matrix and form a minimum-

variance portfolio of US equities results in substantial risk reduction with little or no reduction in average
returns.
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we assess the sensitivity of the precision gain from GLS relative to OLS to the number of

PCs.

2. Analysis of Different Approaches

In this section, we analyze the statistical properties of tests based on the approaches

described in Section 1.

2.1. Data and sample

Our analysis involves regressing firm-level stock returns over short windows of time on

firm characteristics. Our sample period is 1991-2021. We focus on this period because it is

long yet relatively recent and because the data necessary to construct the firm characteristics

we analyze is well-populated during this period. We begin by collecting daily firm-level stock

returns from CRSP for the period 1990-2021.14 We use return data starting in 1990 even

though the sample period starts in 1991 because we require return data prior to a given

window of time when we implement the time-series approaches described in the previous

section.

We analyze eight firm characteristics, which we compute based on data from CRSP and

Compustat. The first four of these are characteristics commonly studied in finance that

capture elements of a firm’s fundamentals. We compute Log(size) daily as the natural log

of market equity, which is the product of daily closing stock price and number of shares

outstanding from CRSP. We compute B/M daily as the log of the ratio of book value

(Compustat ceq), measured at the prior fiscal year end, to market equity. We compute

Profit as annual gross profit (Compustat GP ) divided by total assets (Compustat AT ).

We compute Invest as the annual growth rate of total assets (Compustat AT divided by
14Applying standard data filters, we only include stocks traded on the NYSE, AMEX, and NASDAQ, with

share codes equal to 10 and 11, and drop financial and utility firms (1-digit SIC equal to 4 or 6).
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prior-year AT minus 1).

The other four characteristics we analyze are variables used in recent cross-sectional

event studies. We choose these four characteristics because they are easy to replicate us-

ing Compustat data. We measure all characteristics annually. We compute Cash/AT as

cash and short-term investments (Compustat CHE) divided by total assets. We compute

Debt/AT as the sum of long-term debt (Compustat DLTT ) and debt in current liabilities

(Compustat DLC), divided by total assets. Fahlenbrach, Rageth, and Stulz (2021) studies

return differences with these two variables around the arrival of the COVID-19 pandemic in

2020. We compute TaxRate as 100 times income taxes paid (Compustat TXDP ) divided

by the sum of pre-tax income (Compustat PI) and special items (Compustat SPI), set to

0 if PI < 0. Wagner, Zeckhauser, and Ziegler (2018) studies return differences with this

variable around the resolution of the 2016 U.S. Presidential election. We define NY HQ as

an indicator variable equal to 1 if a firm is headquartered in New York (Compustat STATE

equal to “NY”) and 0 otherwise. Acemoglu, Johnson, Kermani, Kwak, and Mitton (2016)

studies return differences with this variable around the announcement of Timothy Geithner

as nominee for Treasury Secretary in November 2008.

We match the stock return data to the four common variables based on permno and to

the four previously-analyzed variables using matched CRSP-Compustat data. The unit of

observation is a firm-day. We associate with each firm-day observation the value of each

characteristic as of the most recent available date prior to the day of the observation. The

resulting sample consists of 21,060,248 firm-days belonging to 11,549 unique firms. Table 1

presents summary statistics for the sample.

[Table 1 about here]
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2.2. Cross-sectional regressions

We estimate the frequency of Type I errors in standard cross-sectional event study re-

gressions for each of the eight characteristics by estimating regressions of returns on the

characteristic for all 1-day and 5-day windows in our sample period and computing the frac-

tion of these windows in which the relationship is statistically significant at the 1% and 5%

levels.15 Researchers sometimes use event windows longer than one day in cross-sectional

event studies of returns because of uncertainty about the timing with which the market learns

and processes news of the event. We include 5-day windows in our analysis to understand

the implications of using a longer event window. For each of the four variables analyzed

in prior studies, we exclude windows overlapping with the event window as defined in the

study, though the effects of this exclusion are immaterial.

We compute the fraction of relationships that are statistically significant based on default

standard errors, White-adjusted standard errors, and standard errors clustered at the Fama-

French 49-category industry level – standard errors commonly reported in practice. In

addition, we compute this fraction based on industry-clustered standard errors where we

also control for Fama-French 49-category industry fixed effects since the combination of

industry fixed effects and industry clustering is sometimes used in cross-sectional event-

window return regressions. We begin by estimating univariate regressions of 1-day returns

on each characteristic separately. Figure 2 presents the results.

[Figure 2 about here]

Statistical significance rates at the 1% and 5% significance level based on default stan-

dard errors average 28.1% and 38.3%, respectively, across the eight characteristics. These

rates are greater for characteristics more closely linked to fundamentals. They are highest
15We focus on 2-sided tests throughout the paper since these are the convention in finance research.
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for Log(size) and B/M and lowest for the NY HQ indicator. This conclusion is not sur-

prising since day-to-day innovations in expected future cash flows are likely to exhibit more

commonality among firms with similar fundamentals than among firms headquartered in the

same state. These results suggest that Type I errors based on default standard errors are

commonly an order of magnitude larger than the intended size of the test.

Statistical significance rates based on White-corrected standard errors are generally

smaller than those based on default standard errors, and those based on standard errors

clustered at the industry level smaller still. However, rates based on industry-clustered stan-

dard errors are still far higher than the intended size of the test, averaging 18.1% and 29.3%

at the 1% and 5% significance levels, respectively. Adjusting standard errors to account

for cross-sectional correlation in errors at the industry level does not appear to adequately

account for return correlations. Including industry fixed effects in addition to clustering at

the industry level has little impact on excess rejection rates, decreasing these rates in some

cases but increasing them in others. Overall, the evidence in Figure 2 suggests that tests

based on standard cross-sectional event study regressions do not allow for reliable tests of

the differential return effects of a specific event on firms with different characteristics.

In this baseline case, we estimate separate univariate regressions for each characteristic

and use 1-day event windows. In practice, researchers analyzing cross-sectional differences

in returns around an event often estimate multivariate regressions and, in some cases, use

multi-day event windows to account for uncertainty about the exact time at which the

market learned about the event or slow market reaction to the event. We next present

mean statistical significance rates across the eight characteristics for all four combinations of

univariate and multivariate regressions and 1-day and 5-day event windows. Table 2 presents

the results. Panel A presents results for different approaches to computing standard errors.

In addition to the clustering strategies described above, we also include results based on

standard errors clustered at different industry levels, by headquarters state level, and by 5-
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by-5 size × book-to-market bins and 5-by-5-by-5 size × book-to-market × gross profitability

bins from Fama and French (2015). Panel B presents results based on default standard errors

using different risk-adjusted return measures.

[Table 2 about here]

Statistical significance rates are higher for 5-day event windows than for 1-day event win-

dows. Rates are generally lower for multivariate regressions than for univariate regressions.

This result suggests that one benefit of including control variables in a cross-sectional event

study regression is a reduction in Type I errors. Clustering by broader industry categories

or size and book-to-market buckets result in the lowest statistical significance rates. How-

ever, it is important to note that a low rate of statistical significance in these tests does

not indicate that a given clustering scheme is superior. Clustering with a small number of

clusters can also substantially reduce power (Abadie et al., 2023). Risk-adjusting returns

lowers significance rates slightly as well. However, the bottom line is that average statistical

significance rates are considerably higher than the intended size of the tests in all cases.

Another way to assess the severity of the cross-correlation problem is to determine by

how much standard errors would need to be inflated to achieve the intended Type I error

rate (i.e., the size of the test). We refrain from tabulating these required rates, since the

information is largely redundant with that in Table 2, with higher rejection rates in that table

translating into greater need to inflate standard errors. However, to provide some context,

the average White standard error across all eight characteristics in a univariate regression

with a one-day event window would need to be multiplied by 3.0 (3.75) to achieve the target

rate of statistical significance at the 5% (1%) level. The average FF49 industry-clustered

standard error would need to be multiplied by 2.3 (2.85).
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2.3. Time-series approaches

Mirroring our analysis of cross-sectional tests, we begin our analysis of the TS-OLS and

TS-GLS approaches by applying these approaches for each characteristic to each 1-day and

5-day window in our sample period and computing the fraction of windows in which the

estimated relationship is statistically significant at the 1% and 5% levels. We analyze both

of the specific sub-approaches to implementing these tests described in Section 1. Figure 3

presents the results.

[Figure 3 about here]

As anticipated, statistical significance rates using the time-series approaches are much

closer to the intended Type I error rate under the null hypothesis than those based on

standard cross-sectional regressions. However, these rates are still too high when we conduct

hypothesis testing using the t-statistic approach, especially at the 1% significance level.

These excess rates arise from fat tails in the distribution of coefficients that these tests fail

to take into account. In contrast, statistical significance rates based on p-values using the

empirical CDF of pre-event window coefficients are only slightly higher than the intended

rate. Because of the fat-tail issue, we recommended relying on p-values based on the empirical

CDF for determining statistical significance when using a time-series approach and consider

only this specific sub-approach for the remainder of the analysis.

We next assess the power of TS-OLS and TS-GLS with 1- and 5-day event windows.

One at a time, for each window of the specified length in the period 1991-2021 and each

characteristic, we add an artificial cross-sectional “effect” to returns of 25 bp per one-standard

deviation change in the characteristic, creating an artificial event window. We then estimate

cross-sectional regressions for that window and for each window of the same size in a pre-

event period consisting of the 199 days prior, where there is no added effect. Finally, we

compute a p-value for the artificial event window coefficient based on the empirical CDF
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of the pre-event window coefficient time series and use that p-value to determine statistical

significance at the 1% and 5% level. Figure 4 presents detection rates based on these tests.

[Figure 4 about here]

Using either time-series approach, detection rates vary widely and are generally smaller

for characteristics such as size and book-to-market ratio that are more directly related to a

firm’s fundamentals. Note that these are the same characteristics for which cross-sectional

regressions produce the highest rates of statistically significant relationships (Figure 2). This

is not a coincidence. The existence of strong relationships in many non-event windows makes

it more difficult to detect the differential effect of an event. Not surprisingly, detection rates

are higher when we introduce larger artificial effects. However, TS-OLS detection rates at

the 5% level are less than 60% for 3 of the 8 characteristics when we add a 50 bp effect,

suggesting that concerns about the power of the TS-OLS approach are valid.

In every case, the TS-GLS approach detects the added effect more frequently than the

TS-OLS approach, with large increases in detection rates in many cases. For example, TS-

GLS detects 25 basis points of additional return per one standard deviation change in a

characteristic at the 5% significance level 1.2-2.9 times as often as TS-OLS, depending on

the characteristic. The greatest power gains occurs for characteristics where TS-OLS power

is low.

To allow for a more formal and comprehensive comparison, Table 3 reports the average

detection rates across all eight characteristics for TS-OLS and TS-GLS for the 25 and 50 bp

added effects separately for 1-day and 5-day event windows. Average detection rates across

the eight characteristics are 1.25-1.92 times as high for TS-GLS as for TS-OLS. Detection

rates are much lower for 5-day event windows than for 1-day event windows. Intuitively,

the noise in returns is greater when the window over which they are measured is longer,

making effects more difficult to detect. The degree to which detection rates decrease with
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the length of the event window is a serious concern, since papers often analyze multi-day

event windows, especially when the exact timing of the event is difficult to determine. While

not the focus of this paper, the results suggest that the returns to precisely pinning down

the timing with which the market responds to an event and therefore being able to use a

narrower event window are high.

[Table 3 about here]

Overall, the power advantage of TS-GLS over TS-OLS seems large enough, especially

when power is low to begin with, to warrant using the former, even if the approach is more

complex. Note that our csestudy Stata module automates both time-series approaches

and so is equally easy to implement using TS-GLS as TS-OLS. For standard data sets, it

produces output for either within seconds. However, even the TS-OLS approach is superior

to standard cross-sectional approaches since it produces approximately the correct rate of

Type I errors, while cross-sectional approaches often produce highly excessive Type I errors.

2.4. Revisiting the number of Principal Components to use in TS-GLS

We now briefly revisit our choice to use 100 PCs to estimate the covariance matrix used

to weight observations in the GLS regressions in our TS-GLS approach. Specifically, we

analyze the sensitivity of the average improvement in precision over the full sample period

from using GLS instead of OLS to the number of PCs we use for each characteristic. This

increase in precision is the source of power gains from the TS-GLS approach. To quantify

the increase in precision, we compute the ratio of the standard deviations of the daily GLS

and OLS coefficients. The lower this ratio, the tighter the distribution of GLS coefficients

relative to OLS coefficients. Figure 5 plots the relationships between the standard deviation

ratios and the number of PCs used for each characteristic.

[Figure 5 about here]
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As with the relationship between minimum variance and number of PCs (Figure 1), the

ratio of GLS to OLS coefficient standard deviations declines sharply with the first few PCs

and is essentially flat between 50 and 195 PCs. It does not appear then that the power gains

from TS-GLS are sensitive to the number of PCs in this range, further justifying our choice

of 100 PCs.

3. Principal Component Analysis

In this section, we further analyze the PCs of returns that we use to construct the

covariance weighting matrix for our GLS approach. By construction, these PCs capture the

most important quanta of return cross correlations. We begin by plotting the fraction of

total variation in return that the first 1, 5, 25, and 50 PCs explain by year. Figure 6 presents

these plots.

[Figure 6 about here]

Two observations are worth making. First, the first few PCs explain a relatively small

fraction of returns. For example, in most years, the first five 5 PCs explain less than 30% of

the variation in returns, while the first 25 PCs explain less than 50% of the variation. Second,

the fraction of total return variation that the first few PCs explain varies considerably over

time. It is higher in years in which large market-moving shocks occurred. For example,

the first few PCs explain a larger fraction of the return variation during the financial crisis

(2008–09) and in the aftermath of the onset of the COVID-19 pandemic (2020–2021).

PCs of stock returns can be interpreted as portfolio weights and used to construct factor

portfolios. We next examine the relationship between PC-based factor portfolio returns,

calculated by implementing PCA on a balanced panel of daily individual stock returns in

each calendar year, and the returns on eight pre-specified factors in the years 2008, 2013,

2020, and 2021. We choose 2008, 2020, and 2021 because these were years in which major
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market-moving events occurred. We choose 2013 to provide a relatively quiescent year for

comparison.

Four of the pre-specified factor portfolios are based on well-known factors from the asset

pricing literature. These are the equity market portfolio (MktRf), small-minus-big portfolio

(SMB), high-minus-low portfolio (HML), and up-minus-down portfolio (UMD). The other

four factor portfolios are constructed as long-only equal-weighted combinations of stocks or

portfolios to capture period-specific conditions. The Tech factor portfolio is constructed from

the Software, Hardware, and Chips Fama-French 49 industries; the Finance portfolio from

Banks, Real Estate, and Finance industries; the Covid portfolio from Meals, Healthcare,

and Drugs industries. The Memes factor portfolio combines whichever subset of GameStop

(GME), AMC (AMC), Bed Bath and Beyond (BBBY), and Blackberry (BB) stocks were

available to trade on each day.

For each of the first five PCs in each year, we compute the returns on a portfolio where the

weights are the elements of the PC. We then compute the absolute values of the correlations

between each of these PCs and each of the pre-specified factors. Table 4 presents the results.

Panels A, B, C, and D present the results for 2008, 2013, 2020, and 2021, respectively.

[Table 4 about here]

The first PC-weighted portfolio return is highly correlated with the equity market port-

folio in all four years. By construction, the first PC-weighted portfolio is approximately the

equal-weighted market portfolio. The correlation is less than one because the equity market

portfolio return is value-weighted. Because of this distinction, the first PC-weighted portfolio

return is also correlated with the SMB factor portfolio return.

For 2008, the second and fourth PC portfolio-weighted returns are both highly correlated

with the Finance, HML, and UMD factor portfolio returns. These two PCs both appear to

pick up common exposure to the financial crisis. For 2020, the third PC-weighted portfolio
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return is highly correlated with the HML and SMB factor portfolio returns, while the

fourth is correlated with the Covid factor portfolio return. For 2021, the third PC-weighted

portfolio return is highly correlated with the Memes factor portfolio return, while the fourth

is highly correlated with the HML, Finance, and Tech factor portfolio returns. For 2013, a

relatively quiescent year, none of the second through fifth PC-weighted portfolios are strongly

correlated with any of the factor portfolio returns.

One conclusion from this analysis is that the factors driving cross-sectional correlations

in returns vary substantially from year to year and often represent factors unique to a period.

Another is that it is often difficult to determine what drives cross sectional correlations in any

given period. These conclusions both further suggest that specifying dimensions of return

correlation a priori – for example, by clustering on a dimension like industry – is likely to

do a poor job of accounting for important sources of cross-sectional correlation in returns.

4. Conclusions

Our results suggest that standard cross-sectional regressions of returns around an event

on firm characteristics produce too many Type I errors to allow for reliable hypothesis testing

and that common adjustments to standard errors are inadequate in addressing this problem.

A time-series approach that involves comparing event-window relationships to a time-series

of pre-event window relationships addresses the problem with excess rejection rates. When

these relationships are estimated via OLS, statistical power can be low. Using the GLS-

based alternative that we introduce increases power substantially and may therefore allow

for detection of more modest relationships between event returns and characteristics that

might otherwise be difficult to test.

Our first set of results hints at the possibility of broader problems with clustering standard

errors in empirical corporate finance. Corporate finance researchers rely heavily on clustering

to address concerns about correlated regression errors. It is difficult in general to assess
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the effectiveness of clustering in accounting for correlations in errors. Because we observe

returns at a high frequency and they are largely serially uncorrelated, we are able to assess

the effectiveness of clustering in cross-sectional event studies. Our results suggest that the

effectiveness of clustering at accounting for cross-sectionally correlated errors is disappointing

because return correlations are too complex for pre-specified clusters to capture. While we

can only speculate, it seems likely that the same issue would arise with any regressions

where the dependent variable is connected to firm fundamentals. We leave exploration of

this problem in the context of other dependent variables for future work.
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Appendix A. Proofs of Propositions

Proposition 1 (Bias and excess variance of the cross-sectional OLS approach). Cross-

sectional OLS estimates of bT in Equation (5) have the following relations to the true event-

specific effect eT :

E(b̂τ − eτ ) = Nτ λ︸ ︷︷ ︸
bias

, (10)

Var(b̂τ − eτ ) = Nτ

[
Var(b̂τ − bτ ) + Nτ Var(nt)

]

= Nτ

(X ′X)−1(X ′ΩνX)(X ′X)−1︸ ︷︷ ︸
Correlation-corrected OLS variance

+ Var(nT )︸ ︷︷ ︸
Excess variance

 , (11)

where X is an N × K matrix stacking all the x′
i,τ−1 vectors. The E(·) and Var(·) operators

condition on xi,τ−1 and draw random νi,t and nt for all t ∈ τ .

Proof. Because b̂T is an OLS estimate, we have:

b̂T − bT = (X ′X)−1X ′ν, (34)

where ν is a N × 1 vector of all νi,T . This implies:

b̂T − eT = b̂T − bT + bT − eT

= (X ′X)−1X ′ν + λ + nT , (35)

which immediately gives Eqs. (10) and (11).

Proposition 2 (Unbiasedness and correct variance of the time-series OLS approach). Write

bτ−l
for the vector of coefficients relating ∑t∈τ−l

ri,t to xi,τ−l
in non-event window τ−l, and bτ
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for the coefficients in the event window. The time-series OLS estimates of eτ is:

êTSOLS
τ = b̂τ − 1

L

L∑
l=1

b̂τ−l
, (14)

Assuming stationary distributions for estimation error b̂τ−l
− bτ−l

and news nt, êTSOLS
τ has

the following relations to the true event-specific effect eτ :

E(êTSOLS
τ − eτ ) = 0︸︷︷︸

No bias

, (19)

Var(êTSOLS
τ − eτ ) = Var(b̂τ−l

)︸ ︷︷ ︸
Time-series variance

, (20)

Φ(êTSOLS
τ − eτ ) = Φ(b̂τ−l

)︸ ︷︷ ︸
Time-series CDF

. (21)

Proof. Because eT has no effect when t ̸= T , the stationarity of b̂t − bt and news nt imply:

E(b̂T − eT ) = E(b̂t) for t ̸= T, (36)

Var(b̂T − eT ) = Var(b̂t) for t ̸= T. (37)

êTSOLS
T therefore satisfy:

E(êTSOLS
T − eT ) = E(b̂T − E(bt) − eT ) = λ + eT − λ − eT = 0, (38)

Var(êTSOLS
T − eT ) = Var(êTSOLS

T − b̂T + b̂T − eT ) = Var(E(bt) + b̂T − eT ), (39)

= Var(b̂t).
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Appendix B. Primer on PCA of returns

Formally, consider an N × T matrix of firm-day returns R and the first K ≤ T PCs of

R. The first PC, c1, is the N × 1 vector such that the projection of R onto c1 explains as

much of the variation in R as possible. One can find c1 by minimizing the sum of the square

of the distances from the elements of R to the projected points along c1. Alternatively and

equivalently, one can find c1 by maximizing the variance of the projected points along c1.

Note that c1 is the first eigenvector of R.

Next, consider an N × T matrix R1 that contains the residuals from the projection of R

onto c1 – that is, the orthogonalization of R to c1. The second PC, c2, is the N × 1 vector

chosen such that the projection of R1 onto c2 explains as much of the variation in R1 as

possible. The vector c2 is the second eigenvector R. Repeating this process K times results

in K PCs (i.e., eigenvectors of R), c1, c2, ..., cK. By construction, these PCs are orthogonal

to each other. If K = T , then the PCs together will explain 100% of the variation in R.
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Appendix C. Why PCA instead of “machine learning” techniques

Initial empirical tests of the APT in Chamberlain and Rothschild (1983), Connor and

Korajczyk (1986), and others used PCA to estimate the unobserved factor structure, as we

do here. Some more-recent asset pricing papers use techniques from the machine learning

literature to extract latent factors, citing specific limitations of the PCA approach. Kelly

et al. (2019) and Gu et al. (2021) point out that the time-invariant and linear relation between

factors and realized returns in Equation (28) is unlikely to hold for individual stocks in longer

samples. Lettau and Pelger (2020) points out that PCA misses factors that explain only a

small fraction of realized returns but are nevertheless important for explaining expected

returns. Neither of these limitations are salient for us because we are interested in finding

all factors – priced or unpriced – that explain realized returns. This allows us to use a

short time-series relative to typical asset pricing studies because estimating average returns

requires much more data than estimating a covariance matrix.

A parallel body of recent research provides support for the continued use of PCA for

estimating the latent factors that explain realized returns. Lopez-Lira and Roussanov (2023)

uses PCA to show there are many unpriced latent factors in individual stock returns, and

that hedging these factors substantially increases the Sharpe ratio of standard priced factors.

Like us, they find that many (50 or more) principal components are necessary to explain a

substantial fraction of realized stock returns, many of which are orthogonal to the canonical

factors. Pelger (2020) uses PCA on high-frequency intraday individual stock returns to find

latent systematic risk factors. Giglio and Xiu (2021) uses PCA on individual stock returns

to model the correlation of return residuals, as we do. They use this technique to increase

statistical power and robustness when estimating the characteristic-return relation.
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Figure 1: Minimum Variance Portfolio Variances and # of Principal Components

This figure depicts the standard deviation of realized returns for a minimum-variance port-
folio of US equities as a function of the number of principal components used to form an
out-of-sample forecast for the covariance matrix of returns (K). Our covariance matrix fore-
casts are constructed using the first K PCs from implementing PCA on balanced panel of
daily returns over the prior 199 trading days, assuming that other than via these PCs each
stock’s return is uncorrelated. The sample period is the 7,811 trading days from 1991–2021.
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Figure 2: Cross-Sectional OLS Statistical Significance Rates

This figure depicts statistical significance rates from univariate cross-sectional OLS regres-
sions of 1-day returns on each of eight characteristics. The figure shows rates based on
default standard errors, White-adjusted (robust) standard errors, Fama-French 49-category
industry clustered standard errors, and industry clustered standard errors from regressions
where we also include industry fixed effects. The top panel shows rates at the 1% significance
level, while the bottom panel shows rejection rates at the 5% significance level. The sample
period is the 7,811 trading days from 1991–2021.
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Figure 3: Time-Series OLS and GLS Statistical Significance Rates

This figure depicts statistical significance rates for time-series OLS and GLS approaches on
1-day returns for each of eight characteristics. The sample period is the 7,811 trading days
from 1991–2021. Rates of significance based on both the empirical cumulative distribution
function (CDF) and t-statistic approaches described in Section 1.2 are shown. The top panel
shows rates at the 1% significance level, while the bottom panel shows rejection rates at the
5% significance level.
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Figure 4: Time-Series OLS Detection Rates with Added Effects

This figure depicts detection rates of time-series OLS and GLS approaches on 1-day returns
for each of eight characteristics with an effect of 25 bp or 50 bp added to returns for each
one standard deviation increase in the given characteristic on the artificial event day. The
detection rates are based on the empirical cumulative distribution function (CDF) approach
described in Section 1.2. The top panel shows detection rates for the 25 bp effect, while
the bottom panel shows detection rates for the 50 bp effect. The sample period is the 7,811
trading days from 1991–2021.
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Figure 5: TS-GLS/TS-OLS Coefficient Standard Deviations and # of Principal Components

This figure plots the ratio of the time-series standard deviation of cross-sectional GLS coef-
ficients to the time-series standard deviation of cross-sectional OLS coefficients from regres-
sions of 1-day returns on each of the characteristics against the number of PCs we use in the
time-series GLS regressions. The sample period is the 7,811 trading days from 1991–2021.
For the four characteristics from papers studying the cross section of returns around an event
(Cash/AT , Debt/AT , TaxRate, and NY HQ), days in the event window analyzed by the
paper are excluded.
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Figure 6: Explanatory Power of Principal Components

This figure plots the mean percent of the daily cross-sectional variance of returns that a given
number of principal components explains by calendar year, for 1, 5, 25, and 100 principal
components. The sample period is the 7,811 trading days from 1991–2021.
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Table 1: Summary Statistics

This table presents summary statistics for the sample of firm-day observations used in our
analysis. The sample period is the 7,811 trading days from 1991–2021. Log(size) is the
natural log of market equity, which is the product of daily closing stock price on the previous
day and number of shares outstanding from CRSP. B/M is the log of the ratio of book value
(Compustat CEQ), measured at the prior fiscal year end, to market equity. Profit. is gross
profit (Compustat GP ) divided by total assets (Compustat AT ). Invest. is the ratio of
capital expenditures (Compustat CAPEX) to total assets (Compustat AT ). Cash/AT is
cash and short-term investments (Compustat CHE) divided by total assets. Debt/AT is
the sum of long-term debt (Compustat DLTT ) and debt in current liabilities (Compustat
DLC), divided by total assets. TaxRate is 100 times income taxes paid (Compustat TXDP )
divided by the sum of pre-tax income (Compustat PI) and special items (Compustat SPI),
set to 0 if PI < 0. NY HQ is an indicator variable equal to 1 if a firm is headquartered in
New York (Compustat STATE equal to “NY”) and 0 otherwise.

Variable Firm-Days Firms Firms/Day Mean Median σ Within-day σ

Return (%) 21,060,248 11,549 2,696 0.12 0.00 4.00 3.81
Log(size) 21,051,745 11,548 2,695 6.14 6.01 1.96 1.81
B/M 20,477,556 11,403 2,622 -1.01 -0.92 0.98 0.96
Profit. 21,059,937 11,548 2,696 0.36 0.34 0.32 0.32
Invest. 15,780,343 7,968 2,020 0.36 0.05 30.27 30.26
CASH/AT 21,059,996 11,549 2,696 0.21 0.12 0.24 0.24
DEBT/AT 20,986,859 11,543 2,687 0.21 0.16 0.22 0.22
Tax Rate 14,387,738 8,090 1,842 23.97 23.66 16.64 16.35
NY HQ 21,060,248 11,549 2,696 0.07 0.00 0.25 0.25
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Table 2: Cross-Sectional OLS Statistical Significance Rates

This table presents mean statistical significance rates at the 1% and 5% statistical significance
levels from cross-sectional OLS regressions of returns on each of eight firm characteristics.
The first four columns report rates at the 1% significance level and the second four columns
report rates at the 5% significance level. In each row, we report rates for univariate and
multivariate regressions (where all eight characteristics are included as explanatory variables)
for one-day and five-day return windows. In Panel A, we present rates for different clustering
choices. In Panel B, we present rates for different risk-adjusted return measures. The sample
period is the 7,811 trading days from 1991–2021.

Panel A: Standard Error Clustering
1% Significance 5% Significance

Univariate Multivariate Univariate Multivariate
1d 5d 1d 5d 1d 5d 1d 5d

Vanilla SE 28.1 % 34.5 % 17.6 % 28.1 % 38.3 % 44.6 % 27.9 % 38.3 %
Robust SE 25.5 % 32.1 % 16.3 % 25.5 % 36.1 % 42.8 % 26.4 % 36.1 %
FF49 Cluster 18.1 % 22.4 % 12.7 % 18.1 % 29.3 % 34.0 % 22.8 % 29.3 %
FF49 FE & Cl 14.8 % 19.6 % 11.0 % 14.8 % 25.0 % 30.4 % 20.0 % 25.0 %
FF30 Cluster 20.2 % 24.6 % 14.1 % 20.2 % 29.5 % 34.0 % 22.9 % 29.5 %
FF10 Cluster 11.1 % 13.9 % 8.4 % 11.1 % 23.4 % 27.1 % 19.6 % 23.4 %
SIC4 Cluster 20.9 % 26.0 % 14.0 % 20.9 % 31.8 % 37.3 % 24.1 % 31.8 %
State Cluster 28.3 % 34.0 % 20.8 % 28.3 % 40.0 % 45.7 % 31.9 % 40.0 %
5 Size x 5 BM 8.0 % 23.9 % 12.8 % 8.0 % 18.8 % 36.2 % 23.3 % 18.8 %
... x 5 Profit. 7.5 % 28.3 % 15.0 % 7.5 % 17.5 % 39.6 % 25.2 % 17.5 %

FF49 x State 16.2 % 24.9 % 16.1 % 16.2 % 28.3 % 36.1 % 27.3 % 28.3 %
FF30 x State 15.3 % 24.0 % 15.0 % 15.3 % 26.6 % 35.5 % 26.2 % 26.6 %

Panel B: Alternative Returns
1% Significance 5% Significance

Univariate Multivariate Univariate Multivariate
1d 5d 1d 5d 1d 5d 1d 5d

CAPM 17.3 % 20.9 % 10.8 % 17.3 % 28.3 % 32.6 % 20.0 % 28.3 %
FF3 22.7 % 26.9 % 13.6 % 22.7 % 34.0 % 38.3 % 23.1 % 34.0 %
FF4 22.5 % 26.5 % 14.0 % 22.5 % 33.8 % 38.0 % 23.6 % 33.8 %
LogRet 18.2 % 22.7 % 10.8 % 18.2 % 29.3 % 34.3 % 19.9 % 29.3 %
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Table 3: Detection Rates for Added Cross-Sectional Effects: TS-OLS vs TS-GLS

This table presents mean detection rates at the 1% and 5% statistical significance levels from
univariate TS-OLS and TS-GLS regressions with artificially added cross-sectional event-
window return effects across eight firm characteristics (explanatory variables). Return effect
sizes are 25 bp and 50 bp per standard deviation change in a characteristic. The detection
rates are based on the empirical cumulative distribution function (CDF) approach described
in Section 1.2. The table shows detection rates for TS-OLS and TS-GLS in percents, the
difference in these rates, and the ratio of these rates. The top panel shows rates at the 1%
significance level, while the bottom panel shows rejection rates at the 5% significance level.
The sample period is the 7,811 trading days from 1991–2021.

Panel A: 1% Significance Rate
Window Effect (bp) TS-OLS TS-GLS Difference Ratio

1 day 25 24.21 52.71 28.49 2.18
1 day 50 60.07 87.00 26.93 1.45
5 day 25 6.63 14.12 7.50 2.13
5 day 50 21.66 43.71 22.05 2.02

Panel B: 5% Significance Rate
Window Effect (bp) TS-OLS TS-GLS Difference Ratio

1 day 25 43.36 71.53 28.17 1.65
1 day 50 75.76 94.51 18.75 1.25
5 day 25 14.79 28.45 13.65 1.92
5 day 50 35.85 60.94 25.09 1.70
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Table 4: Evolving Correlations With Principal Components

This table presents the correlations between factor portfolios constructed from the the first
five principal components of individual stock returns in a calendar year and a variety of other
factors. constructed from individual stock returns. The first four are the market (MktRf),
size (SMB), value (HML) and momentum (UMD) factors, as collected from Ken French’s
data library. We also compute correlations with four period-specific factors: Tech, the
equal-weighted average return of Software, Hardware, and Chips Fama-French 49 industries;
Finance, the average return of Banks, Real Estate, and Finance industries; Covid, the
average return of Meals, Healthcare, and Drugs industries; and Memes, the average return
of whichever subset of GameStop (GME), AMC (AMC), Bed Bath and Beyond (BBBY),
and Blackberry (BB) stocks are available to trade on each day. Panel A presents results for
2008, Panel B for 2013, Panel C for 2020, and Panel D for 2021.

Panel A: 2008

‘Mkt’ ‘Crisis’ ? ? ?
PC 1 2 3 4 5
% x-sectional var. explained 19.7% 2.8% 2.4% 2.0% 1.9%
|ρ(PCi, MktRf)| 96% 7% 7% 7% 1%
|ρ(PCi, SMB)| 24% 34% 24% 4% 4%
|ρ(PCi, HML)| 8% 50% 4% 50% 6%
|ρ(PCi, UMD)| 11% 38% 15% 58% 8%
|ρ(PCi, T ech)| 2% 5% 4% 18% 8%
|ρ(PCi, F inance)| 13% 56% 14% 47% 3%
|ρ(PCi, Covid)| 6% 14% 13% 18% 1%
|ρ(PCi, Memes)| 2% 2% 5% 9% 6%
R2 98% 46% 9% 39% 3%

Panel B: 2013

‘Mkt’ ? ? ? ?
PC 1 2 3 4 5
% x-sectional var. explained 8.2% 3.9% 2.3% 1.9% 1.4%
|ρ(PCi, MktRf)| 93% 8% 1% 2% 2%
|ρ(PCi, SMB)| 33% 0% 11% 7% 7%
|ρ(PCi, HML)| 3% 9% 4% 7% 16%
|ρ(PCi, UMD)| 0% 9% 7% 3% 6%
|ρ(PCi, T ech)| 5% 3% 0% 5% 12%
|ρ(PCi, F inance)| 6% 8% 5% 1% 5%
|ρ(PCi, Covid)| 1% 7% 6% 5% 1%
|ρ(PCi, Memes)| 1% 2% 2% 6% 1%
R2 98% 4% 3% 2% 7%
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Panel C: 2020

‘Mkt’ ? ‘Value’ ‘Covid’ ?
PC 1 2 3 4 5
% x-sectional var. explained 20.5% 4.0% 2.6% 2.4% 2.1%
|ρ(PCi, MktRf)| 88% 6% 21% 25% 0%
|ρ(PCi, SMB)| 36% 25% 2% 31% 8%
|ρ(PCi, HML)| 34% 18% 79% 4% 8%
|ρ(PCi, UMD)| 31% 23% 73% 1% 18%
|ρ(PCi, T ech)| 25% 13% 44% 1% 1%
|ρ(PCi, F inance)| 34% 12% 68% 20% 4%
|ρ(PCi, Covid)| 19% 5% 2% 46% 18%
|ρ(PCi, Memes)| 23% 7% 19% 37% 9%
R2 98% 13% 77% 41% 11%

Panel D: 2021

‘Mkt’ ? ‘Memes’ ‘Value’ ?
PC 1 2 3 4 5
% x-sectional var. explained 12.2% 6.8% 3.7% 3.5% 2.4%
|ρ(PCi, MktRf)| 74% 6% 17% 23% 11%
|ρ(PCi, SMB)| 53% 28% 27% 7% 6%
|ρ(PCi, HML)| 1% 1% 6% 84% 19%
|ρ(PCi, UMD)| 24% 8% 13% 26% 3%
|ρ(PCi, T ech)| 14% 22% 14% 45% 6%
|ρ(PCi, F inance)| 19% 8% 3% 58% 13%
|ρ(PCi, Covid)| 16% 3% 11% 3% 14%
|ρ(PCi, Memes)| 15% 45% 81% 10% 1%
R2 86% 26% 70% 78% 7%
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