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Abstract. In this paper we develop a simulation-based approach to sequen-
tial inference in Bayesian statistics. Our resampling–sampling perspective
provides draws from posterior distributions of interest by exploiting the se-
quential nature of Bayes theorem. Predictive inferences are a direct byproduct
of our analysis as are marginal likelihoods for model assessment. We illus-
trate our approach in a hierarchical normal-means model and in a sequen-
tial version of Bayesian lasso. This approach provides a simple yet powerful
framework for the construction of alternative posterior sampling strategies for
a variety of commonly used models.

1 Introduction

Bayesian inference about a parameter θ requires calculating conditional poste-
rior beliefs p(θ |y) given data y. We assume that the data are generated from a
probability model with marginal distribution, p(y), conditional likelihood p(y|θ)

and initial parameter beliefs p(θ). In most relevant models, the computation of
the posterior p(θ |y), marginal p(y) = ∫

p(y|θ)p(θ) dθ and predictive p(yn+1|yn)

cannot be carried out analytically and approximations are obtained via simulation
schemes. In this paper, we provide a simulation-based approximation to both pos-
teriors and marginal likelihoods. We will reverse the logic in the sequential version
of Bayes rule to provide a resample-sampling alternative to standard sampling-
resample approaches. In this sense, we take the “Bayesian statistics without tears”
analogy of Smith and Gelfand (1992) one step further and propose a “Bayesian
statistics with a smile” approach to sequential Bayesian inference.

Our new look at Bayes’s theorem then delivers a sequential, online inference
strategy that should be exploited in the construction of effective posterior simu-
lation schemes. These strategies are intuitive, easy to implement and teach, and
deliver more for less as direct approximations to marginal likelihoods are also
available. In contrast with Markov chain Monte Carlo (MCMC), our approach is
inherently parallel—an important feature as more multiprocessor computational
power becomes available.
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Sampling-resampling and Markov chain Monte Carlo methods for drawing pos-
terior samples are now commonplace. For example, Rubin (1987) and Smith and
Gelfand (1992) develop sampling importance resampling (SIR) approaches whilst
Gelfand and Smith (1990) develop Gibbs sampling and MCMC methods. A couple
of issues remain with implementation of these methods; first, standard SIR meth-
ods suffer from particle impoverishment and, second, MCMC require repeated
implementations in sequential problems. Moreover, it can be slow or hard to di-
agnose convergence. This can occur even in plain vanilla hierarchical models as
highlighted in our examples.

The remainder of the paper is organized as follows. Section 2 develops our
simulation-based approach to sequential inference in Bayesian statistics. The sec-
tion also discusses the choice of priors, Monte Carlo error assessment and the
computation of marginal likelihoods for model assessment. We illustrate our ap-
proach in Section 3 with two canonical examples: normals-means and Bayesian
lasso. Section 4 concludes.

2 Bayes with a smile

2.1 Resampling-sampling

Given a model p(y|θ) and a prior distribution p(θ), the posterior distribution is
p(θ |y) = p(y|θ)p(θ)/p(y). We wish to be able to sequentially draw sample from
this distribution. Suppose that we currently have draws from θ

(i)
n ∼ p(θ |yn), that

is, the particle set {θ(i)
n }i≥1 are draws from the posterior distribution of θ condi-

tional on yn = (y1, y2, . . . , yn), the data up to the nth observation. We then wish to
propagate these draws to θ

(i)
n+1 ∼ p(θ |yn+1). In this notation, in order to do this, we

construct an augmented vector Zθ
n which provides conditional sufficient informa-

tion for parameter inference. Specifically, we assume that Zθ
n can be constructed so

that we can draw samples from the distribution p(θ |Zn) at each n. The vector Zθ
n

can depend on hidden states, parameters and data. By construction, p(θ |Zθ
n) is

either analytically tractable or straightforward to simulate from. Suppressing the
dependence on θ for the moment, given Zn and samples Z

(i)
n ∼ p(Zn|yn), Rao-

Blackwellisation will then determine

p(θ |yn) = EZn|yn(p(θ |Zn)) and p(θ |yn) ≈ 1

N

N∑
i=1

p
(
θ |Z(i)

n

)

as our posterior approximation. See Gelfand and Smith (1990) for a further dis-
cussion of Rao-Blackwellisation and its efficiency gains.

We are still left with the problem of how to draw samples Z
(i)
n ∼ p(Zn|yn). Es-

sentially, we have reduced the sequential learning problem of calculating p(θ |yn)

to a filtering problem of finding samples from the set of distributions p(Zn|yn).
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Panel A Bayesian learning by resampling–sampling

1. (Resample): Generate an index k(i) ∼ Multi(w(i)
n ), where

w
(i)
n = p(yn+1|Z(i)

n )∑N
j=1 p(yn+1|Z(j)

n )
.

2. (Sample): Draw or propagate Z
(i)
n+1 ∼ p(Zn+1|Z(i)

n , yn+1).

3. (Estimation): Draw θ(i) ∼ p(θ |Z(i)
n+1).

To do this, we further assume that the posterior predictive p(yn+1|Zn) and the
conditional posterior p(Zn+1|Zn,yn+1) are also available for evaluation. In our
examples, we show how to explicitly construct Zn and the corresponding distribu-
tions necessary to implement our approach.

To solve the filtering problem for Zn we exploit, by construction, the avail-
ability of: (i) Posterior predictive: p(yn+1|Zn, θ) and (ii) Posterior propagation:
Zn+1 ∼ p(Zn+1|Zn,yn+1). Reversing the logic of Bayes rule links p(Zn|yn) to
p(Zn+1|yn+1) via

p(Zn+1|yn+1) =
∫

p(Zn+1|Zn,y
n+1) dP (Zn|yn).

We can therefore first resample the current particles with the posterior predictive
and then propagate the augmented variables. This leads to a simple resample-
propagate algorithm for Bayesian learning as detailed in Panel A.

A number of points emerge. First, the predictive distribution p(yn+1|Zn) will
typically depend on only a lower-dimensional subset of components of Zn, al-
though we will use it to resample the full particle set. Second, information from
incoming data is used to build a more efficient set of particles that are then propa-
gated, also informed by yn+1. This has an important practical effect even for pure
filtering problems, but the advantage of resampling-first is most pronounced in
learning problems where the particles include a set of unknown model parame-
ters. Third, consistency of our estimator is straightforward and we can estimate
posterior functionals E(f (θ)|yn+1) ≈ N−1 ∑N

i=1 E(f (θ)|Z(i)
n+1). Finally, an ad-

vantage of the resample-propagate framework is that many nonlinearities in the
evolution of Zn are straightforward to incorporate (see Carvalho et al. (2010a);
Lopes et al. (2011)).

Constructing Zn. One novel aspect of our approach is that Zn can include func-
tions of the parameter θ . To our knowledge, the only similar approach for the
construction of Zn is the nonsequential method of West (1993). The definition
of Zn is not unique. A number of points emerge to find efficient choices. First, as
we are just interested in parameter inference, in many cases Zθ

n will be of fixed
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dimension. For example, in hierarchical models a natural set of augmentation vari-
ables Zn corresponds to conditional sufficient statistics in a set of Gibbs complete
conditionals.

One property is the existence of a propagation rule for Zn. This will generally
be a combination of a deterministic and/or stochastic propagation rule which we
denote

Zn+1 = p(Zn, θ, yn+1)

given the new data yn+1.
In the state filtering and learning literature, it has been common to use suffi-

cient statistics sn and parameters θ as augmented variables. In this special case,
we can write Zθ

n = (sn, θ) where sn is a vector of sufficient statistics that are only
dependent on hidden states and data; see Fearnhead (2002) and Storvik (2002) for
further discussion. The propagation rule Zn+1 = p(Zn, θ, yn+1) then has two com-
ponents: first, the deterministic update of sufficient statistics and then a stochastic
update of parameters given the sufficient statistic update which can be summarised
as

sn+1 = S(sn, yn+1) and θ(i) ∼ p(θ |sn+1).

Another related approach is the missing data algorithm in Kong, Liu and Wong
(1994). Here Zn = (z1, . . . ,Zn) tracks the full vector of hidden (missing) variables
and sequential importance sampling is used to approximate the joint posterior dis-
tribution p(z1, . . . , zn|yn) and then, as in our approach, Rao-Blackwellisation is
used to find p(θ |yn). The key difference is that we only track Zθ

n—a parameter-
dependent, fixed-dimensional conditional sufficient statistic. For us to provide the
full-joint posterior p(z1, . . . , zn|yn) we would have to use an extra MCMC step
using p(z1, . . . , zn|θ(i), yn) given our parameter draws θ(i) ∼ p(θ |yn).

Discussion. It is useful to compare our approach to the current particle filter-
ing/sequential importance sampling literature. Our update for the augmented vec-
tor Zn’s can be viewed as a fully adapted auxiliary particle filter (APF, Pitt and
Shephard (1999)) with the additional step that the augmented variables can de-
pend on functionals of the parameter (APF is a pure state filtering strategy). The
additional parameter draw θ(i) ∼ p(θ |Z(i)

n ) is not present in the APF and is used
to replenish the diversity of the parameter particles.

In the terminology of the APF, we do not have any second-stage weights as our
particles are resampled first and then propagated providing an exact draw from
the particle approximation. This has a number of advantages, particularly in the
parameter learning context, as we do not introduce any extra variance into the
particle weights which can easily lead to particle degeneracies. Moreover, if one
carefully defines Zn to include appropriate auxiliary variables, the flexibility of
our approach is not impaired. Examples of this flexibility appears in Carvalho et al.
(2010b) in the context of general mixture models.
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In the context of state-space models, Storvik (2002) proposes the use of suf-
ficient statistics that are independent of parameters in a propagate-resampling al-
gorithm. Finally, Chen and Liu (2000) work with a similar approach in the mix-
tures Kalman filters context. Our method differs from the latter in two important
ways: (i) they only consider the problem of state filtering and (ii) they work on
the propagate-resample framework. This is carefully discussed in Carvalho et al.
(2010a) where both Storvik (2002) and Chen and Liu (2000) are extended to the
problem of sequential parameter learning in a APF like algorithm for a general
class of state-space models. Again, our view of augmented variables Zn is more
general than Storvik’s approach. One should view Zn as more of a computational
tool than a probabilistic property of the model such as sufficient statistics.

Another related class of algorithms are Rao-Blackwellised particle filters.
The difference is that they typically use propagate-resample algorithm for Zt =
{xt+1, zt+1} where zt+1 denotes missing data and xt+1 a state. As there is no de-
pendence in Zt on parameters this is a pure filtering problem with parameters esti-
mated offline. Additionally they attempt the approximation of the joint distribution
p(Zt |yt ). This target increases in dimensionality as new data becomes available
leading to unbalanced weights. In our framework, p(Zt |yt ) is not of interest as the
filtered, lower-dimensional p(Zt |yt ) is sufficient for inference at time t . Notice
that, based on their work, one has to consider the question of “when to resample?”
as an alternative to rebalance the approximation weights. In contrast, our approach
requires resampling at every step as the preselection of particles in light of new ob-
servations is fundamental in avoiding a decay in the particle approximation for θ .

Another avenue of research uses MCMC steps inside a sequential Monte Carlo
algorithm as in the resample-move algorithm of Gilks and Berzuini (2001). This is
not required in our strategy as we are using a fully adapted approach. Finally, our
general strategies include Liu and West (2001) which gain in their generality but
suffer from having to specify tuning parameters.

In order to illustrate the efficiency gains available with our approach con-
sider the most common class of applications: mixture or latent variable models
p(y|θ) = ∫

p(y|λ)p(λ|θ) dλ where λn = (λ1, . . . , λn) is a data augmentation vari-
able. For this model, with a conditionally conjugate prior, we can find a conditional
sufficient statistic, sn, for parameter learning. Therefore, we define our auxiliary
particle variable as Zn = (λn, sn). Under these assumptions, we can write

p(θ |λn+1, yn+1) ∼ p(θ |sn+1) with sn+1 = S(sn, λn+1, yn+1),

where S(·) is deterministic recursion relating the previous sn to the next, condi-
tionally on λn+1 and yn+1. Now, the propagation step becomes

λn+1 ∼ p(λn+1|λn, θ, yn+1),

sn+1 = S(sn, λn+1, yn+1).

The marginal predictive is given by p(yn+1|yn) = ∫
p(yn+1|λn+1, θ)p(λn+1, θ |

yn) dλn+1 dθ which can be easily approximated with our particle draws. See
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Kitagawa (1996) for a discussion of marginal likelihood calculation within a state
space framework. This avoids the curse of dimensionality encountered if one tries
to directly approximate the marginal likelihood by marginalising over (λn, θ). The
trade-off is that our particle approach will have accumulation of Monte Carlo error
and we are approximating p(y) by a product of lower-dimensional integrals.

Marginal likelihoods. Our approach can also provide estimates of the predictive
p(yn+1|yn) and marginal likelihood p(yn). Marginal likelihoods can then be used
to define Bayes factors, the central element to Bayesian model assessment. Fol-
lowing our resampling–sampling approach, an online estimate of the full marginal
likelihood can be developed by sequentially approximating p(yn+1|yn). Specifi-
cally, given the current particle draws, we have

p(yn+1|yn) ≈
N∑

i=1

p
(
yn+1|Z(i)

n

)

which in turn gives us an estimate of the marginal likelihood

p(yn) ≈
n∏

i=1

pN(yi |yi−1).

We are therefore able to simplify the problem of calculating p(yn) by estimating a
sequence of small integrals. This also provides access to sequential Bayes factors
necessary in many sequential decision problems.

Choice of priors. At its simplest level the algorithm only requires samples θ(i)

from the prior p(θ). Hence the method is not directly applicable to improper pri-
ors. However, the natural class of priors are mixture priors of the form p(θ) =∫

p(θ |Z0)p(Z0) dZ0. The conditional p(θ |Z0) is chosen to be naturally conjugate
to the likelihood. If Z0 is fixed, then we start all particles out with the same Z0

value. More commonly, we will start with a sample Z
(i)
0 ∼ p(Z0) and let the algo-

rithm resample these draws with the marginal likelihood p(y1|Z(i)
0 ). This approach

will lead to efficiency gains over blindly sampling from the prior. This method also
allows us to implement nonconjugate priors together with vague “uninformative”
priors such as Cauchy priors via a scale mixtures of normals.

Monte Carlo error. Due to the sequential Monte Carlo nature of the algorithm,
error bounds of the form Cn/

√
N are available where N is the number of par-

ticles used. The constant Cn is model, prior and data dependent and in general
its magnitude accumulates over n; see, for example, Brockwell, Del Moral and
Doucet (2010). Clearly, these propagated errors will be worse for diffuse priors and
for large signal-to-noise ratios as with many Monte Carlo approaches. To assess
Monte Carlo standard errors we propose the convergence diagnostic of Carpenter,
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Clifford and Fearnhead (1999). By running the algorithm M independent times
(based on N particles) one can calculate the Monte Carlo estimates of the mean
and variance for the functional of interest. Then by performing an analysis of vari-
ance between replicates, the Monte carlo error or effective sample size can be
assessed. One might also wish to perform this measure over different data trajec-
tories as some data realizations might be harder to estimate than others. See Lopes
et al. (2011) for further discussion on Monte Carlo error.

3 Examples

We now illustrate our approach on two canonical examples. First, the normals-
means and ANOVA models presented by Gelfand and Smith (1990) when describ-
ing the Gibbs sampling and second, a Bayesian version to regularised lasso regres-
sion.

3.1 Normal-means model

Consider a normal-means hierarchical model as a benchmark example. Before the
use of simulation-based methods the researcher relied on sophisticated analytical
approximations (Tiao and Tan (1965)) or numerical integration. Specifically, as-
suming that yj = (yj1, . . . , yjnj

)′, we have conditional distributions

(yj |μ,θj , σ
2) ∼ N

(
(μ + θj )1nj

, σ 2Inj

)
and (θj |τ 2) ∼ N(0, τ 2),

where j = 1, . . . , J , and J is the number of groups, 1n is an n-dimensional vector
of ones and In is the identity matrix of order n. Each group j has nj observa-
tions in yj , treatment level θj and overall mean μ. The parameters of interest
are μ and τ 2, whose independent prior distributions are N(μ0, σ

2
0 ) and IG(a2, b2),

where IG denotes an inverse Gamma distribution with mean a2/b2. The prior dis-
tribution for the nuisance parameter σ 2 is IG(a1, b1) and independent of μ and τ 2.

To construct our augmented variables, we track a vector of parameter dependent
set ZJ of the form

ZJ =
(
ȳ,

J∑
j=1

nj∑
i=1

(yij − θj )
2,

J∑
j=1

nj∑
i=1

(yij − μ − θj )
2,

J∑
j=1

θ2
j

)
,

where yij is the actual observation. This includes all the necessary sums of squares
and satisfies a standard set of recursions. Notice that in this case, the augmented
vector is of fixed dimension. Tracking instead ZJ = (θ1, . . . , θJ ) would lead to
more accumulation error as the dimensionality increases with J .

Hence given a new draw θJ+1 and data yJ+1 we can calculate ZJ+1. Notice
that ZJ depends on parameters such as the overall mean μ as well as individual
effects θj .
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The full conditional posterior distributions of θj and μ are

(θj |ZJ ) ∼ N
(
ωȳ + (1 − ω)μ1J ,ω2IJ

)
,

(μ|ZJ ) ∼ N

(
σ 2

1

(∑
i,j

(yij − θj )/σ
2 + μ0/τ

2
0

)
, σ 2

1

)
,

where ȳ = (ȳ1, . . . , ȳJ )′, ω = Jτ 2/(J τ 2 + σ 2), ω2 = σ 2τ 2/(J τ 2 + σ 2), σ−2
1 =

nσ−2 + σ−2
0 and n = ∑

j nj . The full conditional posterior distributions of σ 2

and τ 2 are

(σ 2|ZJ ) ∼ IG
(
a1 + n/2, b1 + ∑

i,j

(yij − μ − θj )
2/2

)
,

(τ 2|ZJ ) ∼ IG
(
a2 + J/2, b2 + ∑

j

θ2
j /2

)
.

Despite being straightforward to implement, the Gibbs sampler can be trapped in
local modes, that is, a small value for τ 2, the random effects variance, will likely
lead to small values for θj , which in turn will lead to a small value for τ 2 and
so forth (see Gelman et al. (2008)). In practice, one would use a collapsed Gibbs
sampler (Liu (1994)) and marginalise over the θj vector to avoid this problem.

The predictive distribution for the nJ+1 observations and the posterior distribu-
tion for the new random effects θJ+1 are

(yJ+1|ZJ ,γ ) ∼ N(μ1nJ+1, σ
2InJ+1 + τ 21nJ+11′

nJ+1
),

(θJ+1|yJ+1, γ ) ∼ N
(
CJ+11′

nJ+1
(yJ+1 − μ1nJ+1),CJ+1

)
,

where γ = (μ,σ 2, τ 2) and C−1
J+1 = nJ+1σ

−2 + σ−1
θ . Given the particle set

(Z0, γ )(i), the resample-propagate algorithm cycles through the following steps:

1. Resample particles with weights w
(i)
J+1 ∝ p(yJ+1|Z(i)

J , γ (i)), and form new par-
ticle set;

2. Propagate θ
(i)
J+1 ∼ p(θJ+1|yJ+1, γ̃

(i));
3. Update conditional sufficient statistics;
4. Draw the components of γ (i) from the above full conditional distributions;
5. Derive Z

(i)
J+1 = S(Z

(i)
J , γ (i), θ

(i)
J+1).

We generated J = 20 groups of observations, with nj = 5 replicates per group,
and parameter values μ = 0, τ 2 = (0.01)2 and σ 2 = 1. Hyper-parameters are set
to μ0 = 0, σ 2

0 = 1020, a1 = b1 = 0 and a2 = b2 = 2. Table 1 and Figure 1 show
the comparisons and results based on 300 simulated datasets. The Gibbs sampler
gets stuck in local modes very early in the Markov chain simulations, while our
resample-propagate algorithm is fairly stable.
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Table 1 Estimation result from 300 simulated datasets. Our resample–sample (RS) scheme uses a
Rao-Blackwellized estimator. True values are used for the initial sample of Gibbs sampling. RS is
based on N = 1000 and Gibbs is based on N = 10,000

μ τ2

Method RMSE Avg. bias SE(Avg. bias) RMSE Avg. bias SE(Avg. bias)

RS 0.0986 0.0020 0.0057 0.000134 0.000013 0.000007
Gibbs 0.1086 −0.0064 0.0063 0.021706 0.007654 0.001175

3.2 Sequential Bayesian lasso

We can develop a sequential version of Bayesian lasso (Carlin and Polson (1991)
and Hans (2009)) for a simple problem of signal detection. The model takes the
form

yi = θi + εi,

θi = τ
√

λiε
θ
i ,

where εi ∼ N(0,1), εθ
i ∼ N(0,1), λi ∼ Exp(2) and τ 2 ∼ IG(a0, b0). This leads

to independent double exponential marginal prior distributions for each θi with
p(θi) = (2τ)−1 exp(−|θi |/τ). The natural set of latent variables is given by the
augmentation variable λn+1 and conditional sufficient statistics leading to Zn =
(λn+1, an, bn). The sequence of variables λn+1 are i.i.d. and so can be propagated
directly with p(λn+1), whilst the conditional sufficient statistics (an+1, bn+1) are
deterministically determined based on parameters (θn+1, λn+1) and previous val-
ues (an, bn).

Given the particle set (Z0, τ )(i), the resample-propagate algorithm cycles
through the following steps:

1. Resample particles with weights w
(i)
n+1 ∝ p(yn+1;0,1 + τ 2(i)λ

(i)
n+1), and form

new particle set;
2. Propagate θ

(i)
n+1 ∼ N(m

(i)
n ,C

(i)
n ), m

(i)
n = C

(i)
n τ̃ 2(i)λ̃

(i)
n+1yn+1 and C−1

n = 1 +
τ̃−2(i)λ̃

−1(i)
n+1 ;

3. Update sufficient statistics a
(i)
n+1 = ã

(i)
n + 1/2 and bn+1 = b̃

(i)
n + θ

2(i)
n+1/(2λ̃

(i)
n+1);

4. Draw τ 2(i) ∼ IG(an+1, bn+1) and λ
(i)
n+2 ∼ Exp(2);

5. Let Z
(i)
n+1 = (λ

(i)
n+1, a

(i)
n , b

(i)
n ) and update (Zn+1, τ )(i).

We use our marginal likelihood (or Bayes factor) to compare lasso with a stan-
dard normal prior. Under the normal prior we assume that τ 2 ∼ IG(a1, b1) and
we match the variances of the parameter θi . As the lasso is a model for sparsity
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Figure 1 Top panel: Typical pattern of the trace plots in Gibbs sampling. The samples are stuck
for a long time at the value very close to zero. Middle panel: Approximate posterior distributions for
the parameters μ and τ2 (based on top frame Gibbs draws). Bottom panel: Approximate posterior
distributions of the parameters μ and τ2 (based on our resampling–sampling filter). Particle filter
and Gibbs sampler sizes are both 10,000 draws.

we would expect the evidence for it to increase when we observe yt = 0. We can
sequentially estimate p(yn+1|yn, lasso) via

p(yn+1|yn, lasso) = 1

N

N∑
i=1

p
(
yn+1|(λn, τ )(i)

)
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Figure 2 Sequential Bayes factor: Lasso versus normal. Particle size is 10,000.

with predictive p(yn+1|λn, τ ) ∼ N(0, τ 2λn + 1). This leads to a sequential Bayes
factor

BFn+1 = p(yn+1|lasso)

p(yn+1|normal)
.

Data was simulated based on θ = (0,0,0,0,1,0,0,0,1,1,0,0,0,0,1) and priors
τ 2 ∼ IG(2,1) for the double exponential case and τ 2 ∼ IG(2,3) for the normal
case, reflecting the ratio of variances between those two distributions. Results are
summarized by Figure 2 which plots the sequential Bayes factor. As expected the
evidence in favor of the lasso is increased when we observe y = 0 and for the
normal model when we observe a signal y = 1.

Our approach can easily be extended to a lasso regression setting. Suppose that
we have yt+1 = X′

tβ + σ
√

λt+1εt+1 and θ = (β, σ 2) and conditionally conjugate
prior is assumed, that is, p(β|σ 2) ∼ N(b0, σ

2B−1
0 ) and p(σ 2) ∼ IG(ν0/2, d0/2).

We track Zt = (st , λt+1) where st = (bt ,Bt , dt ) are conditional sufficient statis-
tics for the parameters. The recursive definitions are Bt+1 = Bt + λ−1

t+1X
′
tXt ,

Bt+1bt+1 = Btbt + λ−1
t+1X

′
t yt+1 and dt+1 = dt + b′

tBtbt + λ−1
t+1X

′
t+1yt+1 −

b′
t+1Bt+1bt+1. The conditional posterior p(θ |Zn) is then available for sampling

and our approach applies.
We use this example to compare the accuracy in estimating the posterior dis-

tribution of the regularization penalty p(τ |y). We use the generic resample-move
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batch importance sampling developed by Gilks and Berzuini (2001) and Chopin
(2002). The data is cut into batches parameterized by block-lengths (n,p). In the
generic resample move algorithm, we first initialize by drawing from the prior
π(θ, τ ) with θ = (θ1, . . . , θ15). The particles are then resampled with the likeli-
hood from the first batch of observations (y1, . . . , yp). Then the algorithm pro-
ceeds sequentially.

There is no need to use the λi augmentation variables as this algorithm does
not exploit this conditioning information. Then a MCMC kernel is used to move
particles. Here, we use a simple random walk MCMC step. This can clearly be
tuned to provide better performance although this detracts from the “black-box”
nature of this approach. Chopin (2002) provides recommendations for the choice
of kernel. Figure 3 provides the comparison with two separate runs of the algo-
rithm both with N = 10,000 particles for (n,p) = (3,5) or (n,p) = (15,1). The
performance is similar for the case p = 1. Our efficiency gains come from the extra
conditioning information available in Zn.

Figure 3 Comparison to Chopin’s (2002) batch sampling scheme.
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4 Final remarks

Our resample–sample perspective is intuitive and easy to implement providing a
simple simulation approach to Bayesian statistics. Many of the models that are
amenable to MCMC fall into the class where it is easy to construct data aug-
mentation variables to also implement our approach. In hierarchical models we
illustrated the simplicity and efficiency of our approach over plain vanilla MCMC
algorithms (Gelfand and Smith (1990)) whilst avoiding diagnosing convergence of
a Markov chain. As a byproduct, we provide fully sequential inference via the set
of posterior distributions p(θ |yn). The caveat is that one needs enough probabilis-
tic structure to be able to construct an efficient augmented variable Zn. In the class
of hierarchical models, there are many such choices—motivated by the complete
conditional structure for the parameters as in Gibbs sampling.

Possibly the greatest advantage of the methodology is for sequential learn-
ing problems where it can be applied to general state space models and where
it extends the Kalman filter recursions to learning (Carvalho et al. (2010a);
Lopes and Tsay (2011)), to general mixture models including infinite dimen-
sional mixtures such as described by Dirichlet processes (Carvalho et al. (2010b))
and to the sequential Bayesian computation of more general classes of models
(Lopes et al. (2011)).
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