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Question

I What is the long-run variance of stock returns?
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Stocks for the Long Run: Conventional Wisdom
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Stocks for the Long Run: Conventional Wisdom

I x-axis: Horizon y-axis: Volatility per year
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Stocks for the Long Run:
Pastor and Stambaugh 2012 “main result”
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Panel A.  Predictive variance of stock returns
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Figure 6. Predictive variance of multiperiod return and its components. Panel A plots the variance of
the predictive distribution of long-horizon returns, Var(rT,T+k|DT ). Panel B plots the five components of
the predictive variance. All quantities are divided by k, the number of periods in the return horizon. The
results are obtained by estimating the predictive system on annual real U.S. stock market returns in 1802 to
2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Summary

Taking a conditional approach, from the investor’s perspective:

I A simple view of the world suggests that stocks are less
volatile over long horizons (Barberis, 2000)...

I ...while a more complex view of the world states that stocks
could be more volatile over long horizons (Pastor and
Stambaugh, 2012)

I Our work hopes to address:

1. Which direction is right?
2. Better understand the results sensitivity to prior specification
3. Enrich PS2012 framework to include time-varying volatilities

I Our results indicates that I am not crazy for having 100%
equity in my retirement portfolio, i.e., stocks are indeed less
volatile in the long-run.
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Background

I Returns k periods in the future:

r1,k = r1 + r2 + r3 + · · ·+ rk

I If returns are i.i.d. ri ∼ N(µ, σ2), i.e., ≈ random walk on
prices:

Var(r1,k) = kσ2

so that the variance per period is constant for any k
investment horizon.
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Background

I However, investor face parameter uncertainty...
I If rt ∼ N(µ, σ2) and µ is unknown then,

Var(rt,t+k |Dt) = E {Var(rt,t+k |µ,Dt)}+ Var {E(rt,t+k |µ,Dt)}

= kσ2 + k2Var(µ|Dt)

I Long run volatility (predictive variance) grows linearly with
the horizon
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Background

I If µ is mean reverting and

rt+1 = µt + ut+1

µt+1 = α + βµt + wt+1

where Corr(ut+1,wt+1) < 0,

Var(rt,t+k) = kσ2 [1 + 2Aρuw + B]

I The effect of ρuw effect can dominate and imply a decreasing
long run risk as both A > 0 and B > 0.
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Background
I For stocks... using dividend yield as a proxy for expected

returns:
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The General Model

rt+1 = µt + ut+1

µt+1 = α + βµt + wt+1

xt+1 = A + Bxt + vt+1

where  ut+1

wt+1

vt+1

 ∼ N(0,Σt+1)
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Priors and Posteriors... “weak prior” on ρ
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Priors and Posteriors... “strong prior” on ρ
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“Weak” vs. “Strong” Prior on ρ
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Figure: Histograms of draws from priors (gray) and posteriors (red) for
ρuw in the “weak prior” (left) and “strong prior” (right) specifications.
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Prior and Posterior Predictives
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Long Run Volatilities per Period
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How Robust is the Result?
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Figure: Histograms of draws from priors (gray) and posteriors (red) for
ρuw in the “weak prior” set up where the 207 observations have been
reshuffled so to break its dynamics.
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Sources of Variance
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Figure: Decomposition of the predictive variance per period. The left
panel is the results from the “weak prior” set up while the “strong prior”
is in the right panel.
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The Main Culprit!
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Figure: Predictive volatility per period plotted for different horizons for
fixed values of β in the “weak prior” set up.
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The Main Culprit!
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Figure: Left panel shows the posterior distribution of µT+30 . The solid
line in the right panel results from the “weak” prior set-up while the
dashed line fixes β = 0.945. The right panel shows the decomposition of
the predictive variance per period for the case where β = 0.945.
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Portfolio Implications
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Replicating PS2012
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Figure: Priors (gray) and posteriors (red) draws of ρuw using priors from
Pastor and Stambaugh 2012. In their terminology, from left to right:
“non-informative”, “less informative” and “more informative”.
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Replicating PS2012
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Figure: Comparison of our results (right) to the results using the priors in
Pastor and Stambaugh 2012 (left).
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Adding Predictors
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Figure: Predictive volatility per period plotted for different horizons when
predictors are added. Results are for the “weak prior” (left) and “strong
prior” set up.

29



Time-Varying Volatilities
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Closing Comments:

I With reasonable priors (or maybe even unreasonable) and 200
years of data stocks look very attractive for long horizon
portfolios.

I This result appears robust to the added complexity of time
varying relationships between predictors and expected returns
and stochastic volatility.

I The take home message is that conventional wisdom might
not be so wrong after all...
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Time Variation

Instead of just Σ, we want Σt , and we want to easily incorporate
the prior belief that

ρt = corr(ut ,wt) < 0, for all t

and possibly other prior beliefs as well.
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Multivariate Stochastic Volatility

We start with the Choleski Stochastic Volatility approach of Lopes,
McCulloch, and Tsay.

With one x we have:

wt = exp(θt1/2)Zt1 p(wt)
ut = θt3 wt + exp(θt2/2)Zt2 p(ut |wt)
vt = φt2 wt + φt3 ut + exp(φt1/2)Zt3 p(vt |wt , ut)

At each t, the three θ’s and three φ’s are one to one with Σt .

Let’s just focus on the θ’s because they determine ρt .
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Multivariate Stochastic Volatility

We have,

wt = exp(θt1/2)Zt1

ut = θt3 wt + exp(θt2/2)Zt2

ρt = ρ(θt1, θt2, θt3) =
θt3 exp(θt1)[

θ2t3 exp(θt1)× exp(θt1)
]1/2
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Multivariate Stochastic Volatility

The usual prior for the θti series is

θti = ai + bi θt−1,i + si zti

Let’s call this q(θti | θt−1,i ).

Letting θt = (θt1, θt2, θt3), let,

q(θt | θt−1) = Π3
i=1q(θti | θt−1,i ).

We usually choose the si so that
successive θ are not “too different”.
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Prior Formulation

Our prior formulation is

p(θt |θt−1) ∝ q(θt | θt−1) f (θt).

To get our ρt prior, we use,

f (θt) = exp

{
−(ρ(θt)− ρ̄)2

κ

}

q:
usual smoothness, don’t let θ’s jump around to much

f :
have preference for each θt , small κ means each θt should be such
that ρt ≈ ρ̄
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Bivariate Stochastic Volatility with Flexible Prior

(wt , ut)
′ ∼ N(0,Σ(θt)), θt = (θt1, θt2, θt3)

wt = exp(θt1/2)Zt1

ut = θt3 wt + exp(θt2/2)Zt2

p(θt |θt−1) ∝ q(θt | θt−1) f (θt)
= q(θt | θt−1) f (θt) K (θt−1)

p(θ0) ∝ f (θ0) Π3
i=1p(θi0)
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Simple Example

Let w and u be the observed bivariate series consisting of daily
returns from two stocks in the S&P100.
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Prior:

f (θt) = exp

[
− (ρ(θt)− ρ̄)2

κ

]

For this data, it is more reasonable to believe that ρt > 0!

I’ll hide the details about q and show results for

ρ̄ = .8, κ = .01, .25

κ = .01: tight prior.

κ = .25: loose prior.
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loose prior: draws from prior

black is average draw, others are individual draws
(1,1): ρt , (1,2): θt1
(2,1): θt2, (2,2): θt3
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loose prior: draws from posterior

black is average draw, others are individual draws
(1,1): ρt , (1,2): θt1
(2,1): θt2, (2,2): θt3
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tight prior: draws from prior

black is average draw, others are individual draws
(1,1): ρt , (1,2): θt1
(2,1): θt2, (2,2): θt3

0 500 1000 1500 2000 2500

0.
2

0.
4

0.
6

0.
8

time

rh
o

0 500 1000 1500 2000 2500

−
10

−
9

−
8

−
7

−
6

time

th
et

a1

0 500 1000 1500 2000 2500

−
10

−
9

−
8

−
7

−
6

time

th
et

a2

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

th
et

a3

45



tight prior: draws from posterior

black is average draw, others are individual draws
(1,1): ρt , (1,2): θt1
(2,1): θt2, (2,2): θt3
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