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Everyone knows...

...that unmeasured confounders can lead to biased estimates of regression
coefficients (omitted variable bias)

Suppose we’re interested in the treatment effect of dietary kale intake.

And want to know how effective it is at lowering cholesterol, which is our
outcome variable.

Unfortunately, we have only observational data (i.e., not a randomized
study).
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Kale intake predicts exercise

Our bad luck, only gym-rats seem to eat much kale. And exercise is
known to lower cholesterol: the “direct” effect is confounded.

Yi = β0 + αDi + εi ,

Because cov(Di , εi ) 6= 0, we can write

Yi = β0 + αDi + ωDi + ε̃.

Since cov(Di , ε̃i ) = 0, we mis-estimate α as α + ω.
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We must “adjust” for weekly exercise

The good news is, we can control for weekly exercise, Xi , by including it
in the regression:

Yi = β0 + αDi + βXi + εi .

This “clears out” the confounding: conditional on Xi , cov(Di , εi ) = 0 and
we’re good to go.

But what if we don’t know what we need to control for?
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Everyone knows...

...that shrinkage priors (e.g., point-mass priors) allow us to “safely”
include many covariates in a regression (even more than our sample size!)

We have lots of theory backing this up:

I Stein type results on admissibility (yay ridge regression!)

I Oracle type results

I Intuition concerning bias-variance trade-offs

So we should control for as many things as possible and use our
favorite shrinkage prior, right?
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The obvious approach

Yi = β0 + αDi + βXi + εi .

I a flat prior on the treatment effect: (α, σ2
ε) ∝ 1/σε,

I shrinkage prior on β (e.g., a horseshoe prior).

And we’re off to the races!
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oops

GoodBayes NaiveBayes OLS Oracle

0.
05

0.
10

0.
15

0.
20

It turns out that this “obvious” approach is really bad at getting
reasonable estimates of the treatment effect α.
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What happened?

Consider the selection equation:

D = Xγ + ε.

By substitution we can write the response equation as

Yi = α(Xiγ + ε) + Xiβ + εi ,

= α(Xiγ + ε) + Xi∆ + [εi + Xi (β −∆)].

For γ 6= 0, biasing β towards zero biases cov(D, ε) away from zero!
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Recap so far

Adjusting for confounding is fundamentally different than estimating a
best linear predictor.

Shrinkage priors want to “explain” (i.e. predict) Y using a small number
of large magnitude coefficients.

The “obvious” model is indifferent if one of those coefficients happens to
be α — we bias towards mis-identification.

Shrinkage priors BIAS the treatment effect coefficient!
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Previous work

Here are some notable references on this...

I Wang, Parmigiani, Dominici (2012), “Bayesian adjustment for
confounding” (BAC)

I Propensity scores: Zigler and Dominici (2014), Weihua An (2010)

I Lasso-based: Belloni, Chernozhukov and Hansen (2015)

I Instrumental variables: Hahn and Lopes, Hansen and Kozbur
(2014), Chernozhukov, Hansen and Spindler (2015)

Our solution has the virtue of being relatively straightforward.
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The typical parametrization

Selection Eq.: D = Xtγ + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = αD + Xtβ + ν, ν ∼ N(0, σ2
ν).

These equations correspond to the factorization of the joint distribution

f (Y ,D | γ, β, σε, σν) = f (Y | D, β, σε)f (D | γ, σν).

This factorization implies a complete separation of the parameter sets:
independent priors on the regression parameters

π(β, γ, α) = π(β)π(γ)π(α)

imply that only the response equation is used in estimating β and α.
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Our reparametrization: a latent error approach

We reparametrize as

 α
β + αγ
γ

→
 α
βd
βc

 .

which gives the new equations

Selection Eq.: D = Xtβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(D − Xtβc) + Xtβd + ν, ν ∼ N(0, σ2
ν).

We can now shrink βd and βc with impunity!
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Control functions

Our re-parametrization generalizes, and falls under the category of an
approach called “control functions”.

Di = g(Xi ) + εi ,

Yi = f (Di ,Xi ) + νi

To isolate the causal component of f (D,X), we rewrite it as
f (D − g(X),X).

A special case assumes additive separability of f :

Di = g(Xi ) + εi ,

Yi = f1(Di − g(Xi )) + f2(Xi ) + νi .
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Simulation study

Selection Eq.: D = Xtβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(D − Xtβc) + Xtβd + ν, ν ∼ N(0, σ2
ν).

Set var(D) = var(Y ) = 1 and center and scale the columns of X.

Define the `2 norms of the confounding and direct effects as ρ2 = ‖βc‖22
and φ2 = ‖βd‖22 so that

var(D) = ρ2 + σ2
ε

var(Y ) = κ2 + φ2 + σ2
ν ,

with σ2
ε = 1− ρ2 and σ2

ν = 1− α2(1− ρ2)− φ2 and κ2 = α2(1− ρ2).
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ρ2 Bias Coverage I.L. MSE

0.1 New Approach -0.0032 0.943 0.2357 0.0037
OLS -0.0016 0.951 0.2477 0.004
Naive Regularization -0.0112 0.895 0.2089 0.0037
Oracle OLS 0.0023 0.946 0.2173 0.0031

0.3 New Approach -0.0047 0.95 0.2751 0.0047
OLS -0.0018 0.951 0.2808 0.0052
Naive Regularization -0.0355 0.848 0.2293 0.0057
Oracle OLS 0.0026 0.946 0.2464 0.004

0.5 New Approach -3e-04 0.963 0.3345 0.0066
OLS -0.0022 0.951 0.3323 0.0072
Naive Regularization -0.0768 0.746 0.2631 0.012
Oracle OLS 0.0031 0.946 0.2915 0.0056

0.7 New Approach 0.0084 0.964 0.4374 0.0113
OLS 0.0024 0.944 0.4303 0.0123
Naive Regularization -0.1559 0.543 0.3292 0.0346
Oracle OLS 0.004 0.946 0.3764 0.0093

0.9 New Approach -0.004 0.972 0.7403 0.0292
OLS 0.0045 0.954 0.7469 0.0351
Naive Regularization -0.4482 0.231 0.4779 0.2391
Oracle OLS 0.0069 0.946 0.6519 0.0278

Table: n = 100, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.
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ρ2 Bias Coverage I.L. MSE

0.1 New Approach 0.0082 0.918 0.3632 0.0105
OLS -0.0017 0.944 0.4785 0.0144
Naive Regularization -0.0068 0.835 0.2957 0.0097
Oracle OLS -0.001 0.952 0.3235 0.0065

0.3 New Approach -1e-04 0.94 0.4203 0.0128
OLS -0.002 0.944 0.5425 0.0186
Naive Regularization -0.035 0.837 0.3191 0.0126
Oracle OLS -0.0011 0.952 0.3668 0.0084

0.5 New Approach -0.0047 0.93 0.5183 0.0196
OLS -0.0023 0.944 0.6419 0.026
Naive Regularization -0.0869 0.738 0.3555 0.0222
Oracle OLS -0.0014 0.952 0.434 0.0117

0.7 New Approach 0.0056 0.937 0.6926 0.0341
OLS 0.0046 0.934 0.8204 0.0478
Naive Regularization -0.189 0.539 0.4033 0.0565
Oracle OLS -0.0018 0.952 0.5604 0.0195

0.9 New Approach -0.0772 0.959 1.1572 0.0804
OLS -0.0156 0.931 1.4347 0.1402
Naive Regularization -0.5419 0.102 0.4868 0.3297
Oracle OLS -0.003 0.952 0.9706 0.0585

Table: n = 50, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.
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Empirical example: Levitt abortion reanalysis

According to “Freakonomics”:

I unwanted children are more likely to grow up to be criminals,

I therefore legalized abortion, which leads to fewer unwanted children,
leads to lower levels of crime in society.

To investigate, they conduct three analyses, one each for three different
types of crime: violent crime, property crime, and murders.
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Donohue III and Levitt data

Y is per capita crime rates (violent crime, property crime, and murders)
by state, from 1985–1997, and D, is the “effective” abortion rate.

The control variables, X, are:

I prisoners per capita (log),

I police per capita (log),

I state unemployment rate,

I state income per capita (log),

I percent of population below the poverty line,

I generosity of AFDC (lagged by fifteen years),

I concealed weapons law,

I beer consumption per capita.

Including state and year dummy variables brings the total number of
control variables to p = 66 (with n = 624).
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Replication

Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.110 -0.072 -0.171 -0.090 -0.221 -0.040
Our way -0.113 -0.073 -0.182 -0.098 -0.222 -0.039
naive -0.075 -0.010 0.079 0.301 -0.186 0.085
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An augmented control set

Our expanded model includes the following additional control variables:

I interactions between the original eight controls and year,

I interactions between the original eight controls and year squared,

I interactions between state effects and year,

I interactions between state effects and year squared.

When allowing for this degree of flexibility, estimation becomes quite
challenging, with just n = 624 observations and p = 176 control
variables.
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Augmented analysis results

Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.226 0.019 -0.374 0.336 -0.125 1.763
Our way -0.038 0.014 -0.114 0.053 -0.081 0.279
naive 0.007 0.129 0.011 0.412 -0.227 0.116
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Recap

I Social scientists want to draw causal conclusions from observational
data.

I This can only be done if sufficient control variables are included.

I If too many control variables are included, statistical properties
suffer.

I Regularization is known to improve statistical estimation, but if
employed naively, regularization actually makes causal inference
worse!

I Our new parametrization fixes this flaw.
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Done...
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