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Summary

This paper introduces a novel class of Bayesian models for multivariate time
series analysis based on a synthesis of dynamic linear models and graphical
models. The models are then applied in the context of financial time series
for predictive portfolio analysis providing a significant improvement in per-
formance of optimal investment decisions.

Keywords and Phrases: Dynamic Linear Models, Gaussian Graphical
Models, Portfolio Analysis.

1. INTRODUCTION

Bayesian dynamic linear models (DLMs) (West and Harrison, 1997) are used for
analysis and prediction of time series of increasing dimension and complexity in
many applied fields. The time-varying regression structure, or state-space struc-
ture, and the sequential nature of DLM analysis flexibly allows for the creation and
routine use of interpretable models of increasingly realistic complexity. The inherent
Bayesian framework naturally allows and encourages the integration of data, expert
information and systematic interventions in model fitting and assessment, and thus
in forecasting and decision making.

The current work responds to the increasing prevalence of high-dimensional mul-
tivariate time series and the consequent needs to scale and more highly structure
analysis methods. Contexts of high-dimensional and rapidly sampled financial time
series are central examples, though similar needs are emerging in many areas of sci-
ence, social science and engineering. This paper introduces a broad new class of time
series models to address this: the framework synthesises multi- and matrix-variate
DLMs with graphical modelling to induce sparsity and structure in the covariance
matrices of such models, including time-varying matrices in multivariate time series.

The presentation outlines the framework of matrix-variate DLMs and Gaussian
graphical models for structured, parameter constrained covariance matrices based
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on the use of the family of hyper-inverse Wishart distributions. We then discuss
formal model specification and details of the resulting methodology for both constant
and, of more practical relevance, time-varying structured covariance matrices in the
new models. We summarise the theory that extends DLM sequential updating,
forecasting and retrospective analysis to this new model class.

Our applied examples combine these flexible new Bayesian models with Bayesian
decision analysis in financial portfolio prediction studies. We discuss theoretical and
empirical findings in the context of an initial example using 11 exchange rate time
series, and then a more extensive and practical study of 346 securities from the S&P
Index. This latter application also develops and applies graphical model search
and selection ideas, based on existing MCMC and stochastic search methods now
translated to the DLM context, as well as illustrating the real practical utility, and
benefits over existing models, of the new methodology.

2. BACKGROUND

2.1. Matrix-Variate Dynamic Linear Models

The class of Matrix Normal DLMs (Quintana and West, 1987) represents a gen-
eral, fully-conjugate framework for multivariate time series analysis and dynamic
regression with estimation of cross-sectional covariance structures.

The model for the p × 1 vector Yt is defined by

Y
′
t = F

′
tΘt + ν

′
t, νt ∼ N(0, VtΣ), (1)

Θt = GtΘt−1 + Ωt Ωt ∼ N(0, Wt,Σ), (2)

where the evolution innovation matrix Ωt follows a matrix-variate normal with mean
0 (a n × p matrix), left covariance matrix Wt and right covariance matrix Σ.

2.2. Gaussian Graphical Models

Graphical model structuring for multivariate models characterizes conditional inde-
pendencies via graphs (Dawid and Lauritzen, 1993; Jones et al, 2005) and provides
methodologically useful decompositions of the sample space into subsets of variables
so that complex problems can be handled through the combination of simpler ele-
ments. In high-dimensional problems, graphical model structuring is a key approach
to parameter dimension reduction and, hence, to scientific parsimony and statistical
efficiency when appropriate graphical structures are identified.

In normal distributions, conditional independence restrictions are simply ex-
pressed through zeros in the off-diagonal elements of the precision matrix. A
p−vector x with elements xi has a zero-mean multivariate normal distribution with
p×p variance matrix Σ and precision Ω = Σ−1 with elements ωij . Write G = (V, E)
for the undirected graph whose vertex set V corresponds to the set of p random
variables in x, and whose edge set E contains elements (i, j) for only those pairs of
vertices i, j ∈ V for which ωij 6= 0. The canonical parameter Ω belongs to M(G),
the set of all positive-definite symmetric matrices with elements equal to zero for all
(i, j) /∈ E.

The fully conjugate Bayesian analysis of decomposable Gaussian graphical mod-
els (David and Lauritzen, 1993) is based on the family of hyper-inverse Wishart
(HIW) distributions for structured variance matrices. If Ω = Σ−1 ∈ M(G), the
hyper-inverse Wishart

Σ ∼ HIWG(b, D) (3)
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has a degree-of-freedom parameter b and location matrix D ∈ M(G) implying that
for each clique P ∈ P , ΣP ∼ IW (b,DP ) where DP is the positive-definite symmetric
diagonal block of D corresponding to ΣP . The full HIW is conjugate to the likelihood
from a Gaussian sample with variance Σ on G.

3. SPARSITY IN DLMS: GENERALIZATION TO HIW

Graphical structuring can be incorporated in matrix normal DLMs to provide models
for Σ that allow structure, induce parsimony and lead to statistical and computa-
tional efficiencies as a result. For a given decomposable graph, take the hyper-inverse
Wishart as a conjugate prior for Σ; it turns out that the closed-form, sequential up-
dating theory of DLMs can be generalized (Theorem 1 of Carvalho and West, 2006)
to this richer model class.

Consider the matrix normal DLM above and suppose Ω = Σ−1 is constrained
by a graph G. If Dt is the data and information set conditioned upon at any time
t, assume the NHIW initial prior of the form

(Θ0,Σ |D0) ∼ NHIWG(m0,C0, b0,S0). (4)

In components,

(Θ0 |Σ, D0) ∼ N(m0,C0, Σ) and (Σ |D0) ∼ HIWG(b0, S0), (5)

which incorporates the conditional independence relationships from G into the prior.
This is in fact the form of the conjugate prior for sequential updating at all times t,
(detailed in Carvalho and West, 2006), generating a sequence of NHIW priors and
posteriors for (Θ,Σ).

4. TIME-VARYING ΣT

Importantly, the above development extends to the practically critical context of
time-varying Σ → Σ to induce a novel class of graphical multivariate volatility
models. Models of Σt varying stochastically over time are key in areas such as
finance, where univariate and multivariate volatility models have been center-stage
in both research and front-line financial applications for over two decades, as well
as areas in engineering and the natural sciences.

Based on a specified discount factor δ, (0 < δ ≤ 1), beginning at t − 1 with
current posterior

(Σt−1 |Dt−1) ∼ HIWG(bt−1,St−1),

the Beta-Bartlett stochastic evolution of Σt−1 to Σt implies the following prior at
time t

(Σt |Dt−1) ∼ HIWG(δbt−1, δSt−1). (6)

The time-evolution maintains the inverse-Wishart form for the prior of Σt, while
increasing the spread of the HIW distribution by reducing the degrees-of-freedom
and maintaining the location at St−1/bt−1. Observing Yt generates the realized
forecast error et and the time t prior is updated as before, with the discount factor
modification implied by the modified time t prior; that is,

(Σt |Dt) ∼ HIWG(bt,St)

with bt = δbt−1 + 1 and St = δSt−1 + ete
′
t.
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5. LARGE-SCALE DYNAMIC PORTFOLIO ALLOCATION

Bayesian forecasting models and Bayesian decision analysis in asset allocation prob-
lems has been routine for a number of years, from the seminal paper of Quintana
(1992) to more recent work (e.g., Aguilar and West, 2000, Quintana et al, 2003)
with increasingly large problems. Forecast future returns are the key components of
mean-variance portfolio optimization methods that allow for parameter change and
uncertainty to be taken into account in sequential investment decisions.

At time t, given the first two moments (ft,Qt) of the predictive distribution
of a vector of next-period returns and a fixed scalar return target m, the investor
decision problem reduces to choosing the vector of portfolio weights wt to minimize
the one-step ahead portfolio variance w′

tQtwt subject to constraints w′
tft = m and

w′
t1 = 1. The optimal portfolio weights can be expressed in terms of the precision

matrix Kt = Q−1
t , via

w
(m)
ti = λ

fti −
P

j 6=i
(ktij/ktii)ftj

k−1
tii

(7)

(Stevens, 1998), where λ is a Lagrange multiplier. In normal models, the weight
assigned to asset i depends on the ratio of the intercept of its regression on all other
assets relative to the conditional variance of the regression. Hence the investment
in asset i depends on the ratio of the expected return that cannot be explained by
the linear combination of assets to the unhedgeable risk.

In higher-dimensional portfolios, the optimal weights can be very volatile over
time due to the uncertainty in the estimation of covariance matrices. Structured
variance models should help: the above equations suggest that conditional inde-
pendence assumptions can directly influence the uncertainty about wt. If, in fact,
the unhedgeable risk can be obtained by a regression involving a smaller number
of regressors (i.e. having some of the ktij ’s equal to zero) this has to be taken into
account; failing to do so implies that unnecessary parameters are being estimated
and nothing but noise is added to the problem.

Two examples bear this out: “sparse” (with graphical modelling constraints)
models lead to portfolios that are both less risky and more profitable than under
the standard construction with “full” (unconstrained) variance matrices.

5.1. Example: International Exchange Rates

This first application is a dynamic version of the example in Carvalho, Massam
and West (2005) where portfolios for p = 11 international currency exchange rates
relative to the US dollar were compared. The study here uses the graph displayed in
Figure 1. For each model at each time point, mean-variance and minimum-variance
portfolios were computed based on the one-step ahead forecasts. In comparing the
impact on portfolio predictions and decisions of the proposed structured model vis-
a-vis the unconstrained DLM, the overall conclusion is that the DLM graphical
model uniformly outperforms the unconstrained, full variance matrix DLM across
the full time period of portfolio decisions. The uniform dominance is reflected in
higher realized cumulative returns, lower risk portfolios in terms of one-step ahead
predictive variances and lower volatility of the optimal portfolio weights as they are
sequentially revised, consistent with the idea of more stable portfolios. This example
demonstrates the relevance of appropriate model structuring: the graphical model
DLM generates more accurate predictions and optimal portfolio decisions, with lower
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Figure 1: Graph determining the conditional independence structure in
the exchange rate/portfolio investment example.

risk in terms of both the nominal predicted portfolio risk and in terms of realized
outcomes. In addition, the more stable portfolios add to the practical benefits since
they would imply, in a live context, reduced costs in terms of transaction fees for
moving money between currencies period-to-period.

5.2. Example: Portfolio Allocation in the S&P 500

A higher-dimensional application involves p = 346 securities forming part of the
S&P500 stock index. In this higher-dimensional setting, graphical models to induce
structure are particularly key. The example also addresses graphical model structure
selection, evaluating models using Metropolis stochastic search (Jones et al, 2005)
to explore the full space of graphical DLMs using only the first 1,200 observations in
the data set. On the remaining data, we sequentially updated portfolios use a few
graphical DLMs selected based on the posterior at t = 1, 200. The key conclusions
(see Figure 2 here, and details in Carvalho and West, 2006) are that (a) selection
of graphs G according to high posterior probability on the training data of 1,200
observations leads to graphical model DLMs that generate substantial improvements
in realized portfolio applications; and that (b) higher realized returns are coupled
with lower risk and lower volatility of time trajectories of portfolio weights.

6. SUMMARY COMMENTS

The marriage of DLMs with graphical models defines a new, rich class of matrix
DLMs that allow for the incorporation of conditional independence structure in the
stochastically varying, cross-sectional structure of a set of time series. Our examples
focus on Bayesian decision analysis for sequential portfolio allocation, where the
utility and benefits of the new models are sharply illuminated. The value of data-
consistent structuring and constraints on variance matrices across series is evident;
the implied parsimony in parametrization, statistical efficiency in estimation and
reduced uncertainty translates into more accurate predictions and decisions. Our
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Figure 2: S&P 500 portfolios: comparison of cumulative returns under
different models (δ = 0.98).

second example explores aspects of graphical model uncertainty and model selection,
evaluating posterior distributions over graphical structures G as well as time-varying
state and variance parameters on a given graph. The models open up a rich new
area for application of Bayesian modelling, as well as research directions in the class
of dynamic graphical models.
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