
Biometrika (2010), 97, 2, pp. 465–480 doi: 10.1093/biomet/asq017
Advance Access publication 28 April 2010C© 2010 Biometrika Trust

Printed in Great Britain

The horseshoe estimator for sparse signals

BY CARLOS M. CARVALHO, NICHOLAS G. POLSON

Booth School of Business, University of Chicago, Chicago, Illinois 60637, U.S.A.

carlos.carvalho@chicagobooth.edu nicholas.polson@chicagobooth.edu

AND JAMES G. SCOTT

McCombs School of Business, The University of Texas, Austin, Texas 78712, U.S.A.

james.scott@mccombs.utexas.edu

SUMMARY

This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises
from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages
over existing approaches, including its robustness, adaptivity to different sparsity patterns and
analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s
tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct
estimate of the sampling density in sparse situations. Finally, using both real and simulated
data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by
Bayesian model averaging under a point-mass mixture prior.

Some key words: Normal scale mixture; Ridge regression; Robustness; Shrinkage; Sparsity; Thresholding.

1. INTRODUCTION

1·1. The proposed estimator

Suppose we observe a p-dimensional vector y | θ ∼ N (θ, σ 2 I ). If θ is believed to be sparse,
we propose using the following model for estimation and prediction:

θi | λi ∼ N
(
0, λ2

i

)
, λi | τ ∼ C+(0, τ ), τ | σ ∼ C+(0, σ ),

where C+(0, a) is a standard half-Cauchy distribution on the positive reals with scale parameter
a. Crucially, each θi is mixed over its own λi , and each λi has a half-Cauchy prior with common
scale τ . Additionally, we assume Jeffreys’ prior for the variance, p(σ 2) ∝ 1/σ 2. The prior for τ

also follows the treatment of Jeffreys, in that it is scaled by σ , the standard deviation of the error
model (Jeffreys, 1961, Ch. 5).

We estimate θ using the posterior mean under this model, which we call the horseshoe prior.
This name arises from the observation that, for fixed values σ 2 = τ 2 = 1,

E(θi | y) =
∫ 1

0
(1 − κi )yi p(κi | y) dκi = {1 − E(κi | y)}yi ,

where κi = 1/(1 + λ2
i ), and where E(κi | y) can be interpreted as the amount of shrinkage towards

zero, a posteriori. The half-Cauchy prior on λi implies a horseshoe-shaped Be(1/2, 1/2) prior for
the shrinkage coefficient κi . The left side of the horseshoe, κi ≈ 0, yields virtually no shrinkage,
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and describes signals. The right side of the horseshoe, κi ≈ 1, yields near-total shrinkage and
describes noise.

Unlike other similar procedures, the horseshoe prior is free of user-chosen hyperparameters,
since the priors for λi , τ and σ are all fully specified without additional inputs. Nonetheless, the
prior is robust and highly adaptive, yielding strong performance across a variety of situations.

This paper’s goal, aside from introducing the horseshoe prior as a modelling tool, is to
propose a theoretical framework under which the model can be compared with other simi-
lar shrinkage priors. The sparse normal-means problem, while simple, can be thought of as a
proving ground for methodology aimed at solving many of the common challenges in modern
statistics, such as regression, classification, function estimation and regularization of covariance
matrices.

We consider two major issues: robustness to large signals and shrinkage of noise. To address
the first issue, we prove a new representation theorem that characterizes a prior’s tail robustness
in terms of the score function. This emphasizes the role of heavy-tailed priors in constructing
robust estimators, and highlights the advantages of the horseshoe compared to other potential
default priors. To address the second issue, we formally compare various estimators’ asymptotic
rates of convergence under the assumption that the true answer is sparse. This will highlight the
importance of the prior’s behaviour near the origin.

Our procedure performs very strongly in light of both of these criteria. In sparse situations,
the horseshoe prior will ensure that the Bayes estimator for the sampling density converges to
the right answer at a super-efficient rate. Other common local shrinkage rules do not share this
property. Yet when the true answer is far from zero, the horseshoe estimator exhibits a strong form
of Bayesian robustness due to a redescending score function. In short, it will leave obvious signals
unshrunk, even in the face of significant noise. This unique combination of super-efficiency when
the real answer is sparse, coupled with robustness when the real answer is not sparse, proves
to be quite powerful in forming a low-risk estimator that can accurately separate signals from
noise.

1·2. The horseshoe density function

The univariate horseshoe density function lacks an analytic form, but very tight bounds are
available. For ease of notation we assume fixed values of σ 2 = τ 2 = 1 and suppress conditioning
on these terms in writing p(θ), though in general we use the priors specified in the previous
section.

THEOREM 1. The univariate horseshoe density p(θ) satisfies the following: (a) limθ→0 p(θ) =
∞. (b) For θ � 0,

K

2
log

(
1 + 4

θ2

)
< p(θ) < K log

(
1 + 2

θ2

)
, (1)

where K = 1/(2π3)1/2.

Proof . See the Appendix. �

It is also possible to integrate explicitly over τ , yielding a marginal density for λi given by
p(λi ) = 2 log λ2

i /{π2(λ2
i − 1)}, though of course the terms are not independent once τ has been

marginalized away. Indeed, the dependence structure induced by this marginalization will be
difficult to visualize, making it easier to think in terms of p univariate conditionally independent
priors p(λi | τ ) rather than a complex joint prior p(λ1, . . . , λp) over R

p.
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Fig. 1. Comparison of the horseshoe (solid), Cauchy (dotted) and double-exponential (dashed) densities.

Figure 1 plots the density in (1) with the standard double-exponential and standard Cauchy
densities. The horseshoe prior has heavy, Cauchy-like tails decaying like θ−2, along with a pole
at θ = 0. These key features allow the prior to perform well in handling sparse vectors.

1·3. Relationship with similar methods

The horseshoe prior assumes independent mixing densities upon p idiosyncratic scale terms
λi , and is thus in the well-known family of multivariate scale mixtures of normals. We call these
local shrinkage rules, to distinguish them from global shrinkage rules that have only a shared
global scale parameter τ . This section, while far from exhaustive, summarizes some other popular
local shrinkage rules that have been considered in the literature.

The discrete mixture prior, θi ∼ wg(θi ) + (1 − w)δ0, can also be represented as a variance
mixture, with λi ∼ wh(λi ) + (1 − w)δ0. The choice of h will induce the form of the nonnull
density g. If, for example, h is a point mass at τ , then g is a N (0, τ 2) distribution. Scott & Berger
(2006) study this prior extensively.

The Student-t prior, θi ∼ tξ (0, τ ), is defined by an inverse-gamma mixing density, λ2
i ∼

IG(ξ/2, ξτ 2/2). Tipping (2001) uses this model for sparsity by finding posterior modes under
the assumption that ξ → 0.

The double-exponential prior has mixing density p(λ2
i | τ 2) = (2τ 2)−1 exp{−λ2

i /2τ 2}, τ 2 ∼
IG(ξ/2, ξd2/2). The standard Markov chain Monte Carlo algorithm for working with the double-
exponential model is due to Carlin & Polson (1991), and the use of this model in robust Bayesian
inference dates at least to Pericchi & Smith (1992). A theory for the wider class of powered-
exponential priors appears in West (1987). More recently, Park & Casella (2008) and Hans (2009)
have revitalized interest in this prior as a Bayesian alternative to the lasso (Tibshirani, 1996).

The normal-Jeffreys prior has been studied by Figueiredo (2003) and Bae & Mallick (2004).
This improper prior is induced by placing the Jeffreys’ prior upon each variance term, p(λ2

i ) ∝
1/λ2

i , leading to p(θi ) ∝ |θi |−1 independently. This choice is commonly used in the absence of a
global scale parameter, posing issues that are considered more carefully in § 3·1.

The Strawderman–Berger prior (Strawderman, 1971; Berger, 1980) lacks an analytic form,
but arises from assuming θi | κi ∼ N (0, κ−1

i − 1), with κi ∼ Be(1/2, 1). Johnstone & Silverman
(2004) call this the quasi-Cauchy density, and study it as a possible choice of g in the discrete
mixture model. Denison and George also consider variations on this prior in an Imperial College
technical report from 2000.

The normal-exponential-gamma family of priors, proposed by Griffin and Brown in a 2005
technical report from the University of Kent and further analyzed by Scheipl & Kneib (2009), is
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Table 1. Priors for λi and κi associated with some common local shrinkage rules. For the
normal-exponential-gamma prior, it is assumed that d = 1. Densities are given up to constants.
Prior for θi Density for λi Density for κi

Double-exponential λi exp(−λ2
i /2) κ−2

i exp {−1/(2κi )}
Cauchy λ−2

i exp{1/(2λ2
i )} κ

−1/2
i (1 − κi )−3/2 exp [−κi/ {2/(1 − κi )}]

Strawderman–Berger λi (1 + λ2
i )−3/2 κ

−1/2
i

Normal-exponential-gamma λi (1 + λ2
i )−(c+1) κc−1

i

Normal-Jeffreys λ−1
i κ−1

i (1 − κi )−1

Horseshoe (1 + λ2
i )−1 κ

−1/2
i (1 − κi )−1/2
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Fig. 2. The implied densities p(κi ) up to proportionality for six priors: the double exponential, Cauchy, Strawderman–
Berger, normal-exponential-gamma, normal-Jeffreys and horseshoe. In the bottom-left panel for the normal-

exponential prior, the solid line is for c = 4 and d = 1, while the dashed line is for c = 1/4 and d = 1.

also based upon the exponential mixing density, but generalizes the lasso specification using a
Ga(c, d2) density to mix over the exponential rate parameter. This leads to

p
(
λ2

i

) = c

d2

(
1 + λ2

i

d2

)−(c−1)

.

The two hyperparameters c and d allow control over tail weight and scale, respectively.

1·4. An intuitive basis for comparing shrinkage rules

Priors on shrinkage coefficients κi = 1/(1 + λ2
i ) provide an intuitive way of understanding

local shrinkage rules, since E(θi | yi ) = {1 − E(κi | y)} yi under a multivariate normal scale-
mixture prior. The behaviour of p(κi ) near κi = 0 will control the tail robustness of the prior, and
the behaviour near κi = 1 will control the shrinkage of noise. Table 1 lists the priors for λi and
κi implied by the six different local shrinkage rules described above. Figure 2 also plots these
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Horseshoe estimator for sparse signals 469

six priors on the κ scale, which helps to frame the more formal developments of the rest of the
paper.

The normal-Jeffreys and horseshoe priors both yield p(κi ) unbounded near 1, reflecting their
poles at θi = 0. The double-exponential, Strawderman–Berger, Cauchy and normal-exponential-
gamma priors all tend to fixed constants at κi = 1. These differences are highly significant for
the behaviour of the posterior mean when the true vector is sparse.

The heavier-tailed priors, which are the Cauchy, Strawderman–Berger, normal-Jeffreys, horse-
shoe and normal-exponential-gamma with c < 1, all yield p(κi ) unbounded near 0. The lighter-
tailed priors, which are the double-exponential and normal-exponential-gamma with c � 1, all
cause p(κi ) to vanish at κi = 0. These differences affect the treatment of large, obvious signals.

To provide additional insight as to how p(κi ) affects the behaviour of the resulting estimator,
observe that if κi ∼ Be(a, b), then the implied prior for λi is p(λi ) ∝ λ2b−1

i (1 + λ2
i )−(a+b).

This behaves like λ2b−1
i near the origin, and like λ

−(2a+1)
i in the upper tail. The horseshoe

prior thus marks a sharp phase transition between two extremes. If b < 1/2, then p(λi ) will be
unbounded at zero, unlike under the horseshoe prior. Yet if b > 1/2, then p(λi ) vanishes at zero,
and consequently p(θi ) will be bounded. Choosing b = 1/2 is the only choice for which p(λi )
tends to a nonzero constant at the origin. The horseshoe prior does just this, yet it remains fairly
noninformative on the κ scale, since it places 1/3 of its mass on 1/4 � κi � 3/4.

The normal-Jeffreys prior, of course, is the improper limiting case of κi ∼ Be(ε, ε) as ε → 0.
This will lead to tails that are even heavier, and a pole at θ = 0 that is even more pronounced,
compared to the horseshoe prior. Plotting this prior on the κ scale shows just how informative it
truly is, since most of the probability is highly concentrated near the extremes of 0 and 1.

2. ROBUSTNESS TO LARGE SIGNALS

2·1. A representation of the posterior mean

The following theorem characterizes an estimator’s tail robustness, or its behaviour in situations
where y is very different from the prior mean. Tail robustness is a useful property in sparse settings,
where one would like to shrink observations near zero much more forcefully than those far from
zero.

THEOREM 2. Let p(|y − θ |) be the likelihood, and suppose that p(θ) is a zero-mean scale
mixture of normals: θ | λ ∼ N (0, λ2), with λ having proper prior p(λ). Assume further that the
likelihood and p(θ) are such that the marginal density m(y) is finite for all y. Define the following
three pseudo-densities, which may be improper:

m�(y) =
∫

R

p(|y − θ |) p�(θ) dθ, p�(θ) =
∫

R+
p(θ | λ) p�(λ) dλ, p�(λ) = λ2 p(λ).

Then

E(θ | y) = m�(y)

m(y)

d

dy
log m�(y) = 1

m(y)

d

dy
m�(y). (2)

Proof . See the Appendix. �

If p(|y − θ |) is a normal likelihood, then (2) reduces to

E(θ | y) = y + d

dy
log m(y). (3)
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Versions of (3) appear in Masreliez (1975), Polson (1991) and Pericchi & Smith (1992). But these
results do not apply for the horseshoe prior, which fails to satisfy the common regularity condition
that the density p(θ) is bounded. Theorem 2 relaxes this boundedness condition and extends the
result to situations where p(θ) is a scale mixture of normals with proper mixing density and finite
marginal m(y).

The theorem provides a key insight into an estimator’s behaviour in the presence of large
signals: Bayesian robustness may be achieved by choosing a prior for θ such that the derivative
of the log predictive density is bounded as a function of y. Ideally, of course, this bound should
converge to 0, which from (3) will lead to E(θ | y) ≈ y, for large |y|. This is precisely what
happens under the horseshoe prior and others with sufficiently heavy tails, ensuring that large
signals will not be overshrunk.

2·2. The horseshoe score function

Due to its heavy tails, the horseshoe prior is of bounded influence, leading to an estimator that
is tail-robust.

THEOREM 3. Suppose y ∼ N (θ, 1). Let m(y) denote the predictive density under the horseshoe
prior for known scale parameter τ < ∞, i.e. where (θ | λ) ∼ N (0, τ 2λ2) and λ ∼ C+(0, 1). Let
E(θ | y) denote the posterior mean. Then |y − E(θ | y)| � bτ for some bτ < ∞ that depends upon
τ , and lim|y|→∞ d log m(y)/dy = 0.

Proof . See the Appendix. �

The following corollary is immediate, and shows that the risk of the horseshoe estimator is
bounded for all possible configurations of the true mean vector, whether sparse or not.

COROLLARY 1. The value of Ey | θ (‖θ − θ̂ H‖2) is bounded for all θ .

Proof . Regardless of θ , the risk satisfies

E

{ p∑
i=1

(
θi − θ̂ H

i

)2

}
� E

{ p∑
i=1

(|θi − y| + bτ )2

}
= p + pb2

τ . �

Finally, although the horseshoe prior itself has no analytic form, it does yield an expression for
the posterior mean:

E(θi | yi ) = yi

{
1 − 2�1

(
1/2, 1, 3/2, y2

i /2, 1 − 1/τ 2)
3�1

(
1/2, 1, 5/2, y2

i /2, 1 − 1/τ 2
)
}

, (4)

where �1(α, β, γ, x, y) is the degenerate hypergeometric function of two variables
(Gradshteyn & Ryzhik, 1965, 9.261). Combining (4) with the marginal density in (A1) allows an
empirical-Bayes estimate E(θ | y, τ̂ ) to be computed very rapidly.

3. EFFICIENCY IN HANDLING SPARSITY

3·1. Joint distribution for τ and the λi s

With the exception of Corollary 1, the above results describe the behaviour of the horseshoe
estimator for each θi when τ is known. Usually, however, τ is unknown, leading to a joint
distribution p(y, τ, λ1, . . . , λp) under the assumed half-Cauchy prior for τ . Inspecting this joint
distribution yields an understanding of how sparsity is handled under the global-local framework
of the horseshoe model.
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Let y = (y1, . . . , yp). Recall that κi = 1/(1 + τ 2λ2
i ), and let κ = (κ1, . . . , κp). For the horse-

shoe prior, p(λi ) ∝ 1/(1 + λ2
i ), and so

p(κi | τ ) ∝ κ
−1/2
i (1 − κi )

−1/2 1

1 + (τ 2 − 1)κi
.

Some straightforward algebra leads to

p(y, κ, τ 2) ∝ p(τ 2) τ p
p∏

i=1

exp
(−κi y2

i

/
2
)

(1 − κi )1/2

p∏
i=1

1

τ 2κi + 1 − κi
, (5)

which yields several insights. As in other common multivariate scale mixtures, the global shrink-
age parameter τ is conditionally independent of y, given κ . Similarly, the κi s are conditionally
independent of each other, given τ .

More interestingly, (5) clarifies that the global shrinkage parameter τ is estimated by the
average signal density. To see this, observe that if p is large, the conditional posterior distribution
for τ 2, given κ , is well approximated by substituting κ̄ = p−1 ∑p

i=1 κi for each κi . Ignoring the
contribution of the prior for τ 2, this gives

p(τ 2 | κ) ≈ (τ 2)−p/2
(

1 + 1 − κ̄

τ 2κ̄

)−p

≈ (τ 2)−p/2 exp
{

− 1

τ 2

p(1 − κ̄)

κ̄

}
,

or approximately a Ga {(p + 2)/2, (p − pκ̄)/κ̄} distribution for 1/τ 2. If κ̄ is close to 1, implying
that most observations are shrunk near 0, then τ 2 will be very small with high probability, with
an approximate mean μ = 2(1 − κ̄)/κ̄ and standard deviation of μ/(p − 2)1/2.

Shared global parameters are of fundamental importance in high-dimensional inference. This
is the insight of Stein (1956), and it applies regardless of whether sparsity is present. This fact
is also central to the work of Johnstone & Silverman (2004) in the context of discrete mixtures,
where a global parameter that characterizes sparsity in a data-adaptive way is crucial in bounding
the risk of the resulting procedure.

Models that lack global parameters, or do not estimate them from the data, will not enjoy the
benefits of this adaptivity. This issue is intimately related to the notion of multiplicity control in
Bayesian hypothesis testing (Berry, 1988; Scott & Berger, 2006), where global parameters play
a central role in controlling the rate of Type I errors. In fact, one way of viewing our procedure
is that we are asking τ to play the role of w, the so-called prior inclusion probability in the
discrete-mixture model. This highlights the importance of p(κi ): if κi is constrained by the prior
from being very close to either 0 or 1, then the interpretation of κ̄ as an average signal density
breaks down, and τ will not be a faithful measure of underlying sparsity even if it is learned from
the data.

3·2. Comparison with other Bayes rules

The advantages of the horseshoe prior are not shared by other common scale-mixture rules.
Under the double-exponential prior, for example, small values of τ can also lead to strong
shrinkage near the origin. This shrinkage, however, can severely compromise performance in the
tails. Results from Pericchi & Smith (1992) and Mitchell (1994) show that the posterior mean
E(θi | yi ) = wi (yi + b) + (1 − wi )(yi − b), where

wi = F(yi )/{F(yi ) + G(yi }, F(yi ) = eci �(−y − b),

G(yi ) = e−ci �(−y + b), b = √ 2

τ
, ci = √ 2(yi − μ)

τ
,
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Fig. 3. A comparison of the score function for horseshoe and double-exponential priors for different
values of the global scale parameter τ . (a) τ = 0·1, solid line; τ = 1·0, dotted line; τ = 10·0, dashed

line. (b) τ = 0·5, solid line; τ = 1·0, dotted line; τ = 4·0, dashed line.

and where � is the normal cumulative distribution function. The double-exponential posterior
mean thus has an interpretation as a data-based average of y − b and y + b. This can be seen in
the score function, plotted in Fig. 3. Small values of τ may help to reduce risk at the origin, but
do so at the expense of increased risk in the tails, since |E(θi | yi ) − yi | ≈ √ 2/τ for large |yi |.

Therefore, when θ is sparse, estimation of τ under the double-exponential model must balance
two competing forces: risk due to undershrinking noise, and risk due to overshrinking large
signals. This compromise is forced by the structure of the prior, and will be required under any
model without tails sufficiently heavy to ensure a redescending score function. As Fig. 3 shows,
the horseshoe prior requires no compromise of this sort.

Other local shrinkage priors with tails at least as heavy as the Cauchy will be similarly robust.
This includes the Strawderman–Berger, the normal-Jeffreys, the normal-exponential-gamma with
c � 1/2 and of course the Cauchy itself. Tails lighter than Cauchy but heavier than exponential
may also be sufficient in practice, though we have not investigated this fully.

3·3. Kullback–Leibler risk bounds

We have argued at an intuitive level that the horseshoe is better at suppressing noise than many
other scale-mixture priors. This intuition can be formalized by relating the behaviour of the prior
near the origin to its efficiency in handling sparsity.

The following theorem demonstrates that, when the true mean is zero, the horseshoe Bayes
estimator for the sampling density converges to the right answer at a super-efficient rate compared
to that of other common estimators. This efficiency is measured using the Kullback–Leibler
divergence between the true sampling model and the Bayes estimator of the density function. The
theorem is proved for the univariate case, with convergence in the multivariate case following
from a componentwise application of the results for a fixed value of τ .

A preliminary lemma is required. To avoid notational confusion between priors and sampling
models, we use θ0 to denote the true value of the parameter, pθ = p(y | θ) to denote a sampling
model with parameter θ and μ(A) to denote the prior or posterior measure of some set A. We
also let L(p1, p2) = E p1{log(p1/p2)} denote the Kullback–Leibler divergence of p2 from p1.

LEMMA 1. Let Aε = {θ : L(pθ0, pθ ) � ε} ⊂ R denote the Kullback–Leibler information neigh-
bourhood of size ε, centred at θ0. Let μn(dθ) be the posterior distribution under some prior
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measure μ(dθ) after observing data y(n) = (y1, . . . , yn), and let p̂n = ∫
pθ μn(dθ) be the poste-

rior mean estimator of the density function.
Suppose that the prior μ(dθ) is information dense at pθ0 , in the sense that μ(Aε) > 0 for all

ε > 0. Then the following bound for Rn, the Cesàro-average risk of the Bayes estimator p̂n, holds
for all ε > 0:

Rn = n−1
n∑

j=1

L(pθ0, p̂ j ) � ε − n−1μ(Aε).

The proof of this lemma can be found in Clarke & Barron (1990). Intuitively, it follows from
the fact that, for any θ , {n−1 log(pθ0/pθ )} converges to L(pθ0, pθ ) almost surely under pθ0 , which
allows the following approximation:

n−1 E pθ0
{log(pθ0/ p̂n)} ≈ n−1 log

∫
exp{nL(pθ0, pθ )}μ(dθ).

This lemma can be used to characterize the Kullback–Leibler risk in terms of μ(Aε), the
amount of prior mass in a neighbourhood of θ0. The horseshoe prior’s pole at zero produces a
super-efficient rate of convergence when θ0 = 0.

THEOREM 4. Suppose the true sampling model pθ0 is y j ∼ N (θ0, σ
2). Then:

(1) For p̂n under the horseshoe prior, the optimal rate of convergence of Rn when θ0 = 0 is
Rn = O{n−1(log n − b log log n)}, where b is a constant. When θ0 � 0, the optimal rate is
Rn = O(n−1 log n).

(2) Suppose p(θ) is any other density that is continuous, bounded above, and strictly positive
on a neighbourhood of the true value θ0. For p̂n under p(θ), the optimal rate of convergence
of Rn, regardless of θ0, is Rn = O(n−1 log n).

Proof . See the Appendix. �

Two further remarks help to set this theorem in context. First, the horseshoe estimator’s super-
efficient rate occurs only on a set of prior measure zero. But this set is of special importance in
sparse situations, since the hypothesis that some components of θ are zero has been explicitly
flagged as an interesting possibility. Yet if θ0 � 0, the horseshoe yields no worse a rate than any
other common prior.

Second, this super-efficient rate of Kullback–Leibler convergence cannot be shared by any
prior whose density function is bounded at the origin. Of course, priors with bounded density
functions may exhibit large differences in the constant that multiplies the basic O(n−1 log n) rate,
which can lead to substantial differences in performance on real problems.

3·4. Thresholding

We now describe a simple thresholding rule for the horseshoe estimator that can yield accurate
decisions about whether each θi is signal or noise. The decision rule, though informal, appears
nearly indistinguishable from the formal Bayes rule under the discrete-mixture model and a
symmetric loss function where false negatives and false positives are penalized equally. This
suggests an interesting correspondence between the two procedures.

Under the discrete mixture-model described in § 1, the Bayes estimator for each component
is the posterior mean θ̂i = wi Eg(θi | yi ), where wi is the posterior inclusion probability for θi ,
and g is the distribution of the nonzero means. Accordingly, wi serves a dual role. First, it is
a posterior probability giving rise to a formal Bayes decision rule about whether θi should be
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Table 2. Posterior probabilities wi under the discrete-mixture model, expressed as percentages,
for 10 fixed signals of varying strength. These same ten signals are tested in nine datasets where
there are increasingly many standard-normal noise observations, with numbers given in the
left-most column. The bracketed numbers are the corresponding shrinkage weights 1 − κ̂i under

the horseshoe model, also expressed as percentages.
Signal strength

Noise 0·5 1·0 1·5 2·0 2·5 3·0 3·5 4·0 4·5 5·0 FP

25 18 (15) 20 (17) 23 (18) 27 (21) 31 (24) 35 (28) 39 (32) 44 (37) 49 (42) 54 (47) 0 (0)
50 8 (11) 10 (12) 12 (14) 15 (17) 19 (20) 25 (26) 32 (33) 41 (40) 50 (49) 60 (57) 0 (0)

100 8 (14) 10 (17) 15 (22) 27 (31) 46 (46) 69 (62) 86 (75) 95 (85) 99 (89) 100 (92) 0 (0)
200 5 (11) 6 (12) 11 (17) 21 (26) 42 (43) 70 (63) 90 (79) 98 (87) 100 (91) 100 (93) 2 (1)
500 1 (4) 2 (4) 3 (6) 6 (10) 14 (18) 35 (36) 67 (61) 91 (80) 98 (89) 100 (92) 1 (1)

1000 0 (1) 1 (1) 1 (2) 2 (3) 3 (5) 9 (10) 24 (25) 55 (52) 85 (76) 97 (88) 0 (0)
2000 0 (1) 0 (1) 1 (1) 1 (2) 3(4) 8 (9) 24 (24) 59 (54) 89 (80) 98 (90) 0 (0)
5000 0 (0) 0 (0) 0 (0) 0 (1) 1 (1) 3 (3) 9 (10) 32 (33) 72 (67) 95 (86) 0 (0)

10 000 0 (0) 0 (0) 0 (0) 0 (1) 1 (1) 3 (3) 9 (10) 32 (30) 74 (68) 96 (88) 3 (2)

FP, the number of false positive declarations, reflecting cases where the posterior probability wi or shrinkage weight
1 − κ̂i is larger than 0·5 for a noise observation.

classified as signal or noise. Second, it measures how aggressively yi should be shrunk to zero
when estimating θi under squared-error loss.

For appropriately heavy-tailed g, the posterior mean under the discrete-mixture rule is ap-
proximately wi yi . Compare this form to the horseshoe estimator: θ̂i = (1 − κ̂i )yi , where κ̂i is
the posterior mean of κi . Clearly, the shrinkage weight 1 − κ̂i plays the same role as wi in the
discrete-mixture model. It is therefore natural to ask whether these weights, even though they
cannot be interpreted as posterior probabilities, can nonetheless be used to construct an informal
decision rule for classifying each θi as signal or noise.

By analogy with the decision rule one would apply to the discrete-mixture wi s under a sym-
metric 0–1 loss function, one possible threshold based on the horseshoe prior is to call θi a signal
if (1 − κ̂i ) � 0·5, and to call it noise otherwise. To test this thresholding rule, we fixed ten true
signals at the half-integers between 0·5 and 5·0, and repeatedly applied the horseshoe threshold-
ing rule to nine simulated datasets having an increasingly large number of standard-normal noise
observations. We compared the horseshoe shrinkage weights 1 − κ̂i to the posterior inclusion
probabilities from the discrete-mixture rule using Strawderman–Berger priors. Results are shown
in Table 2.

These simulations demonstrate the surprising fact that, even though the horseshoe wi s are
not posterior probabilities, and even though the horseshoe model itself makes no allowance for
two different groups, this simple thresholding rule nonetheless displays very strong control over
the number of false-positive classifications. Indeed, in all situations we have investigated, there
is a striking correspondence between the shrinkage weights from the horseshoe model and the
true posterior probabilities from the discrete-mixture model. This can be seen from Table 2, in
which the horseshoe wi are quite close to the corresponding posterior probabilities under the
discrete-mixture prior across a wide variety of sparsity configurations.

Though the weights (1 − κ̂i ) under the double-exponential prior are not shown, they do not
behave at all like the wi from the discrete mixture model. These results, and many more simula-
tions along these lines, can be found in the third author’s unpublished doctoral thesis, available
from Duke University.
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Table 3. Realized squared-error loss under different estimators
w = 0·05 w = 0·2 w = 0·5

ξ = 2 ξ = 10 ξ = 2 ξ = 10 ξ = 2 ξ = 10

MLE 250 248 249 251 252 251
Double-exponential 171 127 237 217 247 235
NEG (c = 4·0, d = 3) 121 121 134 134 186 183
NEG (c = 2·0, d = 3) 165 164 170 171 187 187
NEG (c = 1·0, d = 3) 199 197 201 202 208 208
NEG (c = 0·5, d = 3) 219 217 220 222 227 225
Empirical-Bayes 32 38 111 129 417 442
NEG (best fixed c, d) 33 39 96 98 179 178
Horseshoe 32 33 94 95 178 244

w, the degree of sparsity; ξ , the tail weight of the true tξ signal density; MLE, maximum likelihood estimator; NEG,
normal-exponential-gamma model.

4. EXAMPLES

4·1. Simulated data

Table 3 shows the results of a simulation study to assess the risk properties of the horseshoe
prior. In this study, we benchmarked our model’s performance against four alternatives: the
maximum-likelihood estimator, the double-exponential model, the normal-exponential-gamma
model and the empirical-Bayes model due to Johnstone & Silverman (2004). This last approach
uses a mixture of a point mass at zero with a double-exponential prior to differentiate signals
from noise, and estimates θi using the posterior median. This last comparison is an especially
important benchmark, as it is widely recognized as the gold standard in handling sparsity.

Our study involved simulating from the following sparse model:

(yi | θi ) ∼ N (θi , 1), θi ∼ w tξ (0, τ ) + (1 − w)δ0,

where δ0 is a point mass at zero, and where tξ (0, τ ) is a Student-t density centred at zero, with ξ

degrees of freedom and scale parameter τ .
In all our simulations, we set τ = 3, and investigated six configurations of tail weight and

sparsity by choosing ξ ∈ {2, 10} and w ∈ {0·05, 0·2, 0·5}. These combinations span a wide range
of behaviours, from very sparse signals with very heavy tails, to mildly sparse signals with much
lighter tails. For each combination we simulated 500 datasets.

When fitting the scale-mixture priors, we used Jeffreys’ prior for the variance, p(σ 2) ∝ 1/σ 2.
In the empirical-Bayes approach, σ , τ and w were estimated by marginal maximum likelihood.

The normal-exponential-gamma prior requires specifying two hyperparameters: c for tail
weight and d2 for scale. To study the effect of these choices, we computed posterior means using
a grid of values spanning 0·1 � d � 10 and 1/2 � c � 8. We report results for five of these choices
in Table 3. Four of these choices involve fixing the scale hyperparameter d at 3 to reflect the
known, true scale of the coefficients. The fifth result reported is the single best performer for
each configuration of ξ and w, which could only be judged after the fact.

Our results show the double-exponential prior systematically losing out to the horseshoe. We
attribute this to the two features mentioned previously: that exponential tails are insufficiently
heavy to estimate large signals when noise is present, and that a pole at zero aids in reducing the
substantial amount of noise in these problems.

The horseshoe prior also systematically beats the default normal-exponential-gamma priors,
and has a slight edge over the best fixed choice of c and d. Given the difficulty of eliciting
these hyperparameters, we judge this to be a major advantage of the horseshoe prior as a default
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choice. Empirical-Bayes thresholding can do quite poorly in the signal-rich configurations, when
w = 0·5. The horseshoe prior was beaten only in the situation when the signal was neither sparse
nor heavy-tailed, with w = 0·5 and ξ = 10. This is unsurprising, since the normal-exponential-
gamma priors yield admissible estimators that seem especially well suited to signals fitting this
description.

The above results strongly support our claims that the horseshoe prior is indeed a good default
choice for the estimation of sparse vectors.

4·2. Vanguard mutual-fund data

We now describe the use of the horseshoe prior in linear regression, with an example intended
to show how the horseshoe can provide a regularized estimate of a large covariance matrix whose
inverse may be sparse. As a test problem, we use the data on Vanguard mutual funds from
Carvalho & Scott (2009), which contains n = 86 weekly returns for p = 59 funds.

The connection with regression is as follows. Suppose we observe a matrix of samples Y T =
(y1 · · · yn), with each p-dimensional vector yi drawn from a zero-mean normal distribution with
unknown covariance matrix �. When p is large relative to n, traditional estimators of � are
known to perform poorly, and some form of regularization is necessary to reduce their variance.
We choose to model the Cholesky decomposition of �−1 and estimate the ensemble of regression
models in the implied triangular system {Y j | Y1, . . . , Y j−1} j=2,...,p, where Y j is the j th column
of the matrix of samples. Horseshoe priors were assumed for the vector of coefficients in each
of these regressions, and posterior means were computed using the Markov chain Monte Carlo
method.

The intuition here is that some of these conditional regressions may be sparse, reflecting a joint
distribution with a conditional-independence, or Markov, structure. Such joint distributions are
often called Gaussian graphical models.

We will compare the out-of-sample predictive performance of the horseshoe model against four
different approaches for estimating �: the maximum-likelihood estimate �̂ = Y TY ; the AND
and the OR versions of the lasso, described by Meinshausen & Buhlmann (2006); and Bayesian
model-averaging over different Gaussian graphical models, using fractional Bayes factors for
computing marginal likelihoods and feature-inclusion stochastic search for model determination
(Scott & Carvalho, 2008).

To assess out-of-sample performance, we used each of the above procedures to estimate � after
observing the first 60 samples. We then attempted to impute random subsets of missing values
among the remaining 26 samples, using the nonmissing values as regressors. The full details of
this exercise are in Carvalho & Scott (2009). Both the data and relevant Matlab code are available
from the authors upon request.

The results are in Table 4, and are expressed in terms of the error relative to the Bayesian
model-averaging solution. It is clear that the horseshoe performs very closely to this benchmark,
which is much more computationally intensive than any procedure based on local shrinkage rules.
At the same time, the horseshoe significantly outperforms the classical lasso solution, regardless
of which version is used.

5. FINAL REMARKS

The goal of this paper has not been to show that the horseshoe is a panacea for sparse problems,
rather merely to show that it is a good default option. It is both surprising and interesting that
its answers coincide so closely with the answers from the gold standard of a Bayesian discrete-
mixture model, both on simulated and real data.
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Table 4. Covariance-estimation example. The table entries are risk ratios versus Bayesian model
averaging in the out-of-sample prediction exercise
MLE Lasso AND Lasso OR Horseshoe BMA

Risk ratio (SE) 10·63 1·25 2·12 1·07 1·00
Risk ratio (AE) 3·51 1·22 1·47 1·04 1·00

SE, squared-error loss; AE, absolute-error loss; MLE, maximum likelihood estimator; BMA, Bayesian model
averaging.

Indeed, these results show an interesting duality between the two procedures. While the discrete
mixture arrives at a good shrinkage rule by way of a procedure for sparsity, the horseshoe estimator
goes in the opposite direction, arriving at a good procedure for sparsity by way of a shrinkage
rule. Its combination of strong global shrinkage through τ , along with robust local adaptation to
signals through the λi s, is unmatched by other common scale-mixture priors.

Finally, a word on sparsity. Many similar procedures, most notably the lasso, estimate θ using
the posterior mode. This can cause some components of the estimated vector to be identically
zero. Nonetheless, we prefer the posterior mean, and have chosen to study this rather than the
mode. For one thing, the posterior mean is the Bayes estimator under quadratic loss, while the
mode is the Bayes estimator under so-called 0-1 loss. In situations where estimation and prediction
are the goals, the mean therefore embodies a loss function that is more likely to be closer to the
true loss function, even though the mean itself is not sparse. Moreover, the insight of Bayesian
model averaging is that different configurations of zeros in θ can always be treated as a nuisance
parameter to be averaged over, and that averaging over models typically produces better results
than selecting a single model. This marginalization over different sparsity patterns will produce
an estimator for θ like ours, in that it will contain no entries that are exactly zero.

Under normal scale-mixture priors, using the mode is akin to selecting a model, while using
the mean is akin to averaging over models, or in this context, averaging over the two peaks at
0 and 1 in the posterior distribution for each local shrinkage parameter κi . While the mean will
lack zeros, the example of Bayesian model averaging demonstrates quite clearly that estimators
of sparse objects need not be sparse themselves in order to yield excellent performance.
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APPENDIX

Proof of Theorem 1. Clearly,

p(θ ) =
∫ ∞

0

1

(2πλ2)1/2
exp

(
− θ2

2λ2

)
2

π (1 + λ2)
dλ.

Let u = 1/λ2. Then

p(θ ) = K

∫ ∞

0

1

1 + u
exp

(
−θ2u

2

)
du,
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or equivalently, for z = 1 + u:

p(θ ) = K eθ2/2
∫ ∞

1

1

z
exp

(
− zθ2

2

)
dz

= K exp

(
θ2

2

)
E1

(
θ2

2

)
,

where E1(·) is the exponential integral function. This function satisfies tight upper and lower bounds:

exp(−t)

2
log

(
1 + 2

t

)
< E1(t) < exp(−t) log

(
1 + 1

t

)

for all t > 0, which proves Part (b). Part (a) then follows from the lower bound in Equation (1), which
approaches ∞ as θ → 0. �

Proof of Theorem 2. First, m�(y) exists for any proper prior, since it exists for p(λ2) ≡ 1, which leads
to the harmonic estimator in the case of a normal likelihood. This is sufficient to allow the interchange of
integration and differentiation.

We make use of the following identities:

d

dy
p(y − θ ) = − d

dθ
p(y − θ ), λ2 d

dθ
{N (θ | 0, λ2)} = −θN (θ | 0, λ2).

Clearly,

E(θ | y) = 1

m(y)

∫
θ p(y − θ ) N (θ | 0, λ2)π (λ) dθ dλ.

Using integration by parts and the above identities, we obtain

E(θ |y) = 1

m(y)

∫
d

dy
p(y − θ )N (θ | 0, λ2)p�(λ) dθ dλ,

from which the result follows directly. �
Proof of Theorem 3. Clearly,

m(y) = 1

(2π3)1/2

∫ ∞

0
exp

(
− y2/2

1 + τ 2λ2

)
1

(1 + τ 2λ2)1/2

1

1 + λ2
dλ.

Make a change of variables to z = 1/(1 + τ 2λ2). Then

m(y) = 1

(2π3)1/2

∫ 1

0
exp(−zy2/2)(1 − z)−1/2

{
1

τ 2
+

(
1 − 1

τ 2

)
z

}−1

dz

= 2

τ (2π3)1/2
exp

(
− y2

2

)
�1

(
1

2
, 1,

3

2
,

y2

2
, 1 − 1

τ 2

)
. (A1)

By a similar transformation, it is easy to show that

d

dy
m(y) = − 4y

3τ (2π3)1/2
�1

(
1

2
, 1,

5

2
,

y2

2
, 1 − 1

τ 2

)
.

Hence

d

dy
log m(y) = −2y �1

(
1/2, 1, 3/2, y2

i /2, 1 − 1/τ 2
)

3�1

(
1/2, 1, 3/2, y2

i /2, 1 − 1/τ 2
) . (A2)

Next, we use the following identity from Gordy (1998):

�1(α, β, γ, x, y) = exp(x)
∞∑

n=0

(α)n(β)n

(γ )n

yn

n!
1 F1(γ − α, γ + n,−x), (A3)
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for 0 � y < 1, 0 < α < γ , where 1 F1(a, b, x) is Kummer’s function of the first kind, and (a)n is the rising
factorial. Also, if y < 0 and 0 < α < γ , then

�1(α, β, γ, x, y) = exp(x)(1 − y)−β�1

(
γ − α, β, γ,−x,

y

y − 1

)
.

The final identities necessary are from Chapter 4 of Slater (1960). For a real number x ,

1 F1(a, b, x) =
{

�(a)
�(b) ex xa−b{1 + O(x−1)}, x > 0,

�(a)
�(b−a) (−x)−a{1 + O(x−1)}, x < 0.

Hence regardless of the sign of 1 − 1/τ 2, expanding (A2) using these identities yields a polynomial
of order y2 or greater left in the denominator, from which the redescending score function follows. The
bound |y − E(θ | y)| � bτ then follows from the continuity of (A1), which evaluates to 0 at y = 0. �

Proof of Theorem 4. The optimal rate of convergence, following Clarke & Barron (1990), comes from
choosing εn = 1/n, which reflects the ideal case of independent samples y1, . . . , yn .

First, for any prior p(θ ) satisfying the stated regularity conditions in Part 2 of the theorem,

μ(Aε) =
∫

Aε

p(θ ) dθ �
∫ √ ε

− √ ε

p(θ ) dθ = O
(
n−1/2

)
,

since the density is bounded above. Applying Lemma 1, the optimal rate for Part 2 is

Rn � 1

n
− 1

n
log

(
Cn−1/2

) = O

(
log n

n

)
.

Under the horseshoe prior, this same bound holds when θ0 � 0, since the horseshoe density function is
bounded by a constant on a sufficiently small neighbourhood near θ0. When θ0 = 0, we can use the bound
on the density given previously, 2(2π3)1/2 p(θ ) � log(1 + 4θ−2). Ignoring constant factors not depending
upon n, this leads to

μ(Aε) �
∫ √ ε

0
log

(
1 + 4

θ2

)
dθ .

Let u = 1/θ2. This yields

μ(Aε) �
∫ ∞

4/ε

log(1 + u)

u
3
2

du.

Upon integrating by parts, we then have

μ(Aε) � ε1/2 log

(
1 + 4

ε

)
+ 2

∫ ∞

4/ε

1

u
1
2 (1 + u)

du.

This last integral is easily computed and of order ε1/2. Setting ε = 1/n and applying Lemma 1 then gives
the optimal rate bound as Rn = O{n−1(log n − b log log n)}, proving Part 1. �
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