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Abstract

We propose a simulation-based algorithm for inference in stochastic volatility models with possible regime switching in which
the regime state is governed by a first-order Markov process. Using auxiliary particle filters we developed a strategy to sequentially
learn about states and parameters of the model. The methodology is tested against a synthetic time series and validated with a real
financial time series: the IBOVESPA stock index (São Paulo Stock Exchange).
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1. Introduction

Over the years stochastic volatility (SV) models have been considered a useful tool for modeling time-varying
variances, mainly in financial applications where economic agents are constantly facing decision problems dependent
on measures of volatility and risk. See, for example, Engle (1982) and Bollerslev et al. (1994), for the family of
autoregressive conditional heteroscedasticity (ARCH) models, and Jacquier et al. (1994), and Kim et al. (1998), for
the Bayesian estimation of SV models.

One important discovery of the conditional variance and SV literature is the substantial persistence in high-frequency
data, especially in financial markets (Chou, 1988). Lamoureux and Lastrapes (1990) argued that the persistence could
be overestimated if structural changes in the volatility process were ignored in the model. In this paper we focus on a
particular SV model that allows occasional discrete shifts in the parameter determining the level of the logarithm of
volatility through a Markovian process. So et al. (1998) suggested that this model not only is a better way to explain
volatility persistence but is also a tool to capture changes in volatility due to economic forces, as well as abrupt changes
due to unusual market events.

∗ Corresponding author. ISDS-Duke University, NC, USA. Tel.: +1 919 6848753; fax: +1 919 6848594.
E-mail address: carlos@stat.duke.edu (C.M. Carvalho).

0167-9473/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2006.07.019

http://www.elsevier.com/locate/csda
mailto:carlos@stat.duke.edu


C.M. Carvalho, H.F. Lopes / Computational Statistics & Data Analysis 51 (2007) 4526–4542 4527

Several attempts have already been made to fit these types of models (or similar ones). West and Harrison (1997)
and Harvey (1989) introduced variants of the Kalman filter to deal with possibly time-varying parameters in a dynamic
linear model. One of the main drawbacks of those Kalman-filter-like methods is their overparametrization. West and
Harrison (1997) also introduced a multiprocess model that entertains several alternative models at once. Their idea
was proved to be of limited practical use since the number of possible scenarios explodes even with a small number of
observations.

More recently, Hamilton and Susmel (1994) proposed an ARCH model with regime switching for volatility level
(SWARCH), while So et al. (1998) developed a methodology for SV models with regime switching. The first article uses
an iterative method to find the maximum likelihood estimate for the model’s parameters and states. So et al. (1998), on
the other hand, use the forward filtering–backward sampling algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter,
1994) and the smoother algorithm of Shephard (1994) to sample from the exact posterior distribution of parameters
and states of the model. Unfortunately, both methods can be considered static since inferences are made based upon
the whole dataset. In real time applications, where decisions need to be made instantly, such methods are bound to fail
and methods that allow for sequential, on-line updates are preferred.

Our main contribution is to combine the auxiliary particle filter developed by Pitt and Shephard (1999) with Liu and
West’s (2001) ideas on how to update the parameters to propose an algorithm that sequentially estimates a Markov
switch SV model. In Section 2 we introduce the Markov switching SV (MSSV) model, while the proposed methodology
to sequentially update parameters and states is presented in Section 3. The methodology is subsequently applied to
simulated datasets and a financial time series, the Brazilian Ibovespa stock index. This is done in Section 4.

2. Markov switching stochastic volatility

Let yt denote the observed value of a quantity of interest at time t, which is, in our application, the daily returns
of the Ibovespa index. In the MSSV model the observations y1, . . . , yT are conditionally independent and normally
distributed with time-varying log-volatilities �1, . . . , �T , i.e., yt |�t ∼ N (0, exp (�t )), or

p (yt |�t ) = (2�)−1/2 exp

{
−1

2

[
�t + y2

t /e�t

]}
(1)

with (�t |�t−1, �, st ) ∼ N
(
�st + ��t−1, �2

)
, or

p (�t |�t−1, �, st ) =
(

2��2
)−1/2

exp

{
−

(
�t − �st − ��t−1

)2

2�2

}
(2)

and regime variables st following a k-state first order Markov process,

pij = Pr (st = j |st−1 = i) for i, j = 1, . . . , k, (3)

� = (�1, . . . , �k), � = (
�, �, �2

)
and P = (

p11, . . . , p1k−1, . . . , pk1, . . . , pk,k−1
)
. We will denote by � the

(
k2 + 2

)
-

dimensional vector of parameters, i.e., � = (�, P ). For instance, in a 2-state model, there will be six parameters, while
in a 3-state � will be of dimension 11. It is common in the dynamic model literature to refer to s = (s1, . . . , sT )

and � = (�1, . . . , �T ) as the states of the model. In order to avoid identification problems, we adopt the following
reparametrization for �st :

�st = 	1 +
k∑

j=1

	j Ijt , (4)

where Ijt = 1 if st �j and zero otherwise, 	1 ∈ R and 	i > 0 for i > 1. In this model, � corresponds to the level of the
log-volatility and in order to allow occasional discrete changes the model introduces different �’s following a first-order
Markovian process. It would be straightforward to allow other parameters to change according to the same Markovian
process, however, the goal of this model is to isolate clusters of high and low volatility, captured in the different �’s,
and therefore more precisely estimate the persistence parameter � (Hamilton and Susmel, 1994).
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The model specification is completed with the prior distribution for the vector �: 	1 ∼ N
(
	10, C	1

)
, � ∼ T N(−1,1)(

�0, C�
)
, �2 ∼ IG(a, b), �0 ∼ N

(
�00, C�0

)
, 	i ∼ T N(0,∞)

(
	i0, C	i

)
for i = 2, . . . , k and pi ∼ Dir (ui0), for

pi = (pi1, . . . , pik) and i = 1, . . . , k. The hyperparameters are chosen to represent fairly non-informative priors, so we
set �0 = �00 = 0, C� = C�0 = 100, a = 2.001, b = 1, 	i0 = 0, C	i

= 100, and ui0 = (0.5, . . . , 0.5) for i = 1, . . . , k.
A Markov chain Monte Carlo (MCMC) algorithm for the MSSV model has already been developed by So et al.

(1998). The algorithm iterates through a forward filtering–backward sampling step for � and s (Carter and Kohn, 1994;
Frühwirth-Schnatter, 1994), and a traditional linear regression (Gibbs) step for � (Gelfand and Smith, 1990). The main
problem with the MCMC algorithm is that when a new observation arrives, at time T + 1, the whole algorithm must
be re-run in order to generate draws from p (�, �, s|y1, . . . , yT +1), the posterior distribution. Computation becomes
practically infeasible when, for instance, observations arrive every minute or second, such as in certain financial
applications and target tracking problems (Doucet et al., 2001).

In the next section, a customized particle filter algorithm (Pitt and Shephard, 1999; Doucet et al., 2001) will be tailored
to allow on-line (sequential) update of the joint posterior distribution of (�, �, s) of the MSSV model as observations
arrive in time.

3. Sequential Monte Carlo filter

Eqs. (1)–(3) can be seen, respectively, as the observation and system equations of a non-normal and non-linear
dynamic model (West and Harrison, 1997; Jacquier et al., 1994). More specifically,

p (yt |xt , �) ∼ N
(

0, e�t /2
)

,

p (�t |xt−1, �) ∼ N
(
�st + ��t−1, �

2
)

,

Pr (st |xt−1, �) = pst−1st ,

where xt = (�t , st ) plays the role of the (hidden) state vector. Following West and Harrison’s (1997) standard notation,
Dt ={y1, . . . , yt } and p (x0, �|D0) is the posterior distribution of x0 and � at time t =0, or simply the prior distributions
introduced in Section 2. The sequential learning process starts the cycle at time t with the posterior distribution of xt

and �, denoted by p (xt , �|Dt), and finishes the cycle at time t + 1 with the posterior distribution of xt+1 and �, i.e.,
p (xt+1, �|Dt+1). First, we combine the system equation, p (xt+1, �|xt ) (Eqs. (2)–(3)), with the time t posterior of xt ,
to produce the time t prior distribution for xt+1 and �,

p (xt+1, �|Dt) =
∫

p (xt+1, �|xt ) p (xt |Dt) dxt . (5)

Second, Bayes’ theorem combines the prior p (xt+1, �|Dt) and the likelihood (Eq. (1)), to produce the time t + 1
posterior distribution of xt+1 and �,

p (xt+1, �|Dt+1) ∝ p (yt+1|xt+1, �) p (xt+1, �|Dt) . (6)

It is well known that closed form solutions for the evolution step (integral in Eq. (5)) and updating step (posterior in
Eq. (6)) are only available under very restrictive conditions that usually lead to oversimplified models, such as Gaus-
sianity and linearity (see West and Harrison, 1997, for further details about the normal dynamic linear model). Our
MSSV model creates non-linearity in both the system and observation equations and non-normality in the observation
equation, making close form on-line estimation practically and computationally infeasible.

Approximations such as linear Bayes were extensively used during the seventies and eighties (see for example, West
et al., 1985) to overcome these problems. In the early nineties, the MCMC revolution shifted the attention of most work
on dynamic models from on-line sampling, i.e., p (xt |Dt), to smoothed sampling, i.e., p (xt |DT ) for T > t (Carlin
et al., 1992; Carter and Kohn, 1994; Carter and Kohn, 1994; Frühwirth-Schnatter, 1994; Frühwirth-Schnatter, 1994).
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Sequential Monte Carlo algorithms are, however, abundant nowadays thanks mainly to the seminal work of Kitagawa
(1996) and Gordon et al. (1993) and the last ten years have witnessed the appearance of several particle filters, as
sequential Monte Carlo methods have become to be known. Roughly speaking, Kitagawa (1996) utilizes sequential
sets of particles to approximate the prior–predictive–posterior distributions of the states in a general univariate non-
linear dynamic model, while Gordon et al. (1993), propose the use of a sequential sampling importance resampling
(SIR) scheme where importance weights are sequentially updated based on samples from the prior distributions. Their
filter is widely used and became to be well known as the bootstrap filter. In this paper we adopt Pitt and Shephard’s
(1999) auxiliary particle filter that generalizes the bootstrap filter by alternative importance sampling distributions. For
further sequential Monte Carlo algorithms, applications and recent developments, see the book edited by Doucet et al.
(2001) and the scientific reports on the sequential Monte Carlo website http://www-sigproc.eng.cam.ac.uk/smc/.

3.1. Auxiliary particle filters with known �

In order to simplify the technical details behind the auxiliary particle filter we adopt, we start with the assumption that
� is known and will be omitted from the following developments. In Section 3.2 we jointly update xt and �. Roughly
speaking, particle filters define a class of simulation filters that approximate the posterior distribution of xt , p (xt |Dt),

by a set of particles
{
x

(1)
t , . . . , x

(M)
t

}
with discrete probabilities w

(1)
t , . . . , w

(M)
t , a relation that will be denoted here

by
{
x

(j)
t , w

(j)
t

}M

j=1
∼ p (xt |Dt).

Therefore, quantities such as E {g (xt ) |Dt }, the posterior expectation g (xt ), can be directly approximated by∑M
i=1g

(
x

(j)
t

)
w

(j)
t . Similarly, the time t prior distribution for xt+1 (Eq. (5) with � fixed and omitted), can be ap-

proximated by

p̂ (xt+1|Dt) =
M∑

j=1

p
(
xt+1|x(j)

t

)
w

(j)
t (7)

while the time t + 1 posterior distribution of xt+1 (Eq. (6) with � fixed and omitted), can be approximated by

p̂ (xt+1|Dt+1) ∝ p (yt+1|xt+1)

M∑
j=1

p
(
xt+1|x(j)

t

)
w

(j)
t (8)

with Eqs. (7) and (8), respectively, called the empirical prediction density and the empirical filtering density by Pitt
and Shephard (1999).

In order to complete the filtering process, one needs a scheme that transforms wt ’s into wt+1’s such that{
x

(j)
t+1, w

(j)
t+1

}M

j=1
∼ p̂ (xt+1|Dt+1). Following an idea from Smith and Gelfand (1992), Gordon et al. (1993) sug-

gested a SIR filter by using the approximate prior distribution (Eq. (7)) as the importance function. They named the
scheme the bootstrap filter. Despite being an intuitive and simple strategy to implement that simply reweights the current
particles according to their likelihood, the bootstrap filter is very sensitive to the amount of prior information relative
to the likelihood. In other words, relatively diffuse priors or relatively informative likelihood will impoverish the filter
by weighting up only a small subset of the particles, consequently leading to the degeneracy of the on-line algorithm.
See Fig. 1 for an illustrative example where the overlap between relatively non-informative prior and relatively peaked
likelihood produces poor samples.

Pitt and Shephard (1999) developed what became known as the auxiliary particle filter, since it looks at the em-
pirical filtering density (Eq. (8)) as a mixture of M distributions and introduces a latent indicator for the mixture

components, p (xt+1, k) ∝ p (yt+1|xt+1) p
(
xt+1|x(k)

t

)
w

(k)
t , leading to a sequential scheme that first samples kl

from p
(
yt+1|
(j)

t+1

)
w

(j)
t , with 
(j)

t+1 representing a guess, such as the mean or mode, from p
(
xt+1|x(j)

t

)
, and then

http://www-sigproc.eng.cam.ac.uk/smc/
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Prior ____   Likelihood ....
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Fig. 1. Illustrative effect of the inefficiency of using the prior distribution as importance function in a sampling importance resampling.

Table 1
Parameter values for the four simulated examples

Dataset 1 Dataset 2 Dataset 3 Dataset 4

�1 −2.500 −1.500 −0.500 −2.500
�2 −1.000 −0.600 −0.200 −1.000
� 0.500 0.700 0.900 0.500
p11 0.990 0.990 0.990 0.500
p22 0.985 0.985 0.985 0.500

samples x
(l)
t+1 from p

(
xt+1|x

(
kl

)
t

)
. Therefore, the importance function is g (xt+1, k) ∝p

(
yt+1|
t+1

)
p

(
xt+1|x(k)

t

)
w

(k)
t ,

which leads to weights w
(l)
t+1 ∝ p

(
yt+1|x(l)

t+1

)
/p

(
yt+1|


(
kl

)
t+1

)
,and to

{
x

(l)
t+1, w

(l)
t+1

}M

l=1
∼ p̂ (xt+1|Dt+1).

With this procedure we are able to reduce the computational cost and improve the efficiency of the method by giving
more importance to particles with larger predictive value. This procedure applies to any state-space model where both
evolution and observational equations are known so, conditional on the parameters, it can be directly applied to our
MSSV model, where �t and st are the components of xt .

However, as mentioned at the beginning of this section, one should note that we need to update our information about
�, which in our context includes the volatility persistence �, the volatility levels �1, . . . , �k , the volatility variance �2

and the discrete state transition probabilities pij . In the next section we briefly describe Liu and West’s (2001) ideas
on sequential updating of fixed parameters, which will be incorporated in our MSSV filtering presented in Section 3.3.

3.2. Auxiliary particle filters with unknown �

The problem of updating � can be seen as a Bayesian sequential learning process where the goal is to update the
following posterior density:

p (xt+1, �|Dt+1) ∝ p (yt+1|xt+1, �) p (xt+1|�, Dt ) p (�|Dt) .

Gordon et al. (1993) suggest incorporating artificial evolution noise for � and treat it as a state variable. The main
drawback of their idea is simple: parameters are not states! Their approach imposes a loss of information in time as
artificial uncertainties added to the parameters eventually resulting in a very diffuse posterior density for �. Liu and
West (2001) suggest a kernel smoothing to approximate p (�|Dt) that relies upon West’s (1992) mixture modeling
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ideas, which approximates the posterior density of � (possibly transformed), p (�|Dt), by a mixture of multivariate
normals,

p̂ (�|Dt) =
M∑

j=1

w
(j)
t N

(
a�(j)

t + (1 − a)�̃t ; b2Vt

)
, (9)

where �̃t =∑M
j=1w

(j)
t �(j)

t and Vt =∑M
j=1w

(j)
t

(
�(j)
t − �̃t

) (
�(j)
t − �̃t

)′
are approximations for E (�|Dt) and V (�|Dt),

respectively. The constants a and b measure, respectively, the extent of the shrinkage and the degree of over dispersion
of the mixture. As in Liu and West (2001), the choice of a and b will depend on a discount factor � in (0, 1], typically
around 0.95–0.99, so that b2 =1− ((3�−1)/2�)2 and a =√

1 − b2. This is a way to specify the controlling smoothing
parameter b as a function of the amount of information preserved in each step of the filter.

Analogously to Pitt and Shephard’s (1999) algorithm, the sequential scheme proceeds as follows. First, kl is

sampled from p
(
yt+1|
(j)

t+1, �
(j)
t

)
w

(j)
t , with 
(j)

t as before. Second, �(l)
t+1 is sampled from N

(
m

(
kl

)
t ; b2Vt

)
where

m

(
kl

)
t = a�

(
kl

)
t + (1 − a)�̃t . Third, x

(l)
t+1 is sampled from p

(
xt+1|x

(
kl

)
t , �(l)

t+1

)
, which leads to weights w

(l)
t+1 pro-

portional to p
(
yt+1|x(l)

t+1, �
(l)
t+1

)
/p

(
yt+1|


(
kl

)
t+1, m

(kl)
t

)
and samples from the posterior,

{
x

(l)
t+1, �

(l)
t+1, w

(l)
t+1

}M

l=1
∼

p̂ (xt+1, �|Dt+1).

3.3. Sequentially updating the MSSV model

We combine the auxiliary particle filter from Section 3.1 with the kernel smoothing approximation from Section
3.2 in order to design a sequential Monte Carlo filter for our MSSV model. The algorithm will sequentially generate

samples
{
�(j)
t+1, s

(j)
t+1, �

(j)
t+1

}M

j=1
from p (�t+1, st+1, �|Dt+1) ∝ p (yt+1|�t+1) p (�t+1|st+1, �) p (st+1|�) p (�|Dt). The

guess for the state at time t + 1, 
(j)
t+1, needs to be carefully chosen, since the regime state st is a discrete variable. It is

important to note that the parameter vector � now includes k volatility levels �1, . . . , �k , and a k × (k − 1) matrix of
Markov switching probabilities.

We should mention that � was transformed to allow its components to vary in the real line, as it is assumed by the
mixture of multivariate normals. The transformations are: log

(
�2

)
, log

(
	i

)
for i = 2, . . . , k and log

(
pij /

(
1 − pij

))
.

The following chart gives a step-by-step description of the sequential Monte Carlo we design for the MSSV model.

SMC filter for the MSSV model

Step 0:
{
�(j)
t , s

(j)
t , �(j)

t , w
(j)
t

}M

j=1
∼ p (�t , st , �|Dt).

Step 1: For j = 1, . . . , M ,

s̃
(j)
t+1 = arg max

l∈1,...,k
P r

(
st+1 = l|st = s

(j)
t

)
,


(j)
t+1 = �(j)

s̃
(j)
t+1

+ �(j)
t �(j)

t .

Step 2: For l = 1, . . . , M:

1. Sample kl from {1, . . . , k}, with Pr
(
kl

) ∝ p

(
yt+1|


(
kl

)
t+1

)
w

(
kl

)
t .

2. Sample �(l)
t+1 from N

(
m

(
kl

)
t , b2Vt

)
.

3. Sample s
(l)
t+1 from 1, . . . , k with Pr

(
s
(l)
t+1

)
= Pr

(
s
(l)
t+1|s(kl)

t

)
.

4. Sample �(l)
t+1 from p

(
�t+1|�

(
kl

)
t , s

(l)
t+1, �

(l)
t+1

)
.
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Fig. 2. Log-volatilities for all simulated datasets.
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Fig. 3. Simulated data 1 (�=0.5 and p11=0.990): (top graph) simulated time series (yt ), (second graph) true (black line) and estimated log-volatilities
(Ê

(
�t |Dt

)
—green line), (third graph) true regime variables (st ), and (bottom graph) estimated probability that st = 2, i.e., P̂ r (st = 2|Dt ). In this

example the rate of misclassification of st is equal to 4.2%.
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Fig. 4. Simulated data 2 (�=0.7 and p11=0.990): (top graph) simulated time series (yt ), (second graph) true (black line) and estimated log-volatilities
(Ê

(
�t |Dt

)
—green line), (third graph) true regime variables (st ), and (bottom graph) estimated probability that st = 2, i.e., P̂ r (st = 2|Dt ). In this

example the rate of misclassification of st is equal to 6.5%.
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Fig. 5. Simulated data 3 (�=0.9 and p11=0.990): (top graph) simulated time series (yt ), (second graph) true (black line) and estimated log-volatilities
(Ê

(
�t |Dt

)
—green line), (third graph) true regime variables (st ), and (bottom graph) estimated probability that st = 2, i.e., P̂ r (st = 2|Dt ). In this

example the rate of misclassification of st is equal to 16.6%.
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Fig. 6. Simulated data 4 (�=0.9 and p11=0.500): (top graph) simulated time series (yt ), (second graph) true (black line) and estimated log-volatilities
(Ê

(
�t |Dt

)
—green line), (third graph) true regime variables (st ), and (bottom graph) estimated probability that st = 2, i.e., P̂ r (st = 2|Dt ). In this

example the rate of misclassification of st is equal to 39.8%.

Step 3: For l = 1, . . . , M , compute new weights

w
(l)
t+1 ∝ p

(
yt+1|�(l)

t+1

)
/p

(
yt+1|


(
kl

)
t+1

)
.

Step 4:
{
�(j)
t+1, s

(j)
t+1, �

(j)
t+1, w

(j)
t+1

}M

j=1
∼ p (�t+1, st+1, �|Dt+1).

Step 5: Resample.

4. Applications

We apply the sequential Monte Carlo filter to the MSSV model to four synthetic time series and one real dataset. The
simulated examples are based on examples from So et al. (1998). As for the real data we analyze the Brazilian stock
market index, the Ibovespa.

4.1. Simulation study

Four datasets of size 1000 were simulated from the MSSV model (Eqs. (1) and (2)) with k = 2 and parameters
as in Table 1. These datasets are based on the examples presented by So et al. (1998). In the three initial examples
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Fig. 7. Posterior mean, 5 and 95% quantiles of � for the first simulated data (�=0.5): �1, 	1,�,�2, log (p11/ (1 − p11)), and log (p21/ (1 − p21)).

most of the masses in the transition probability matrix are concentrated in the diagonal, implying high persistence
in each regime representing the occasional changes in the volatility process. In fact, the choice of parameters in
these examples coincide with the phenomena observed by Hamilton and Susmel (1994) when exploring the returns
of NYSE index by a SWARCH model. The fourth example is presented as a way to highlight the limitations of
our estimation procedure as the frequent changes (p11 = 0.5 and p22 = 0.5) in the volatility state will be very hard
to detect with a sequential estimation procedure. Also, in all examples, the unconditional mean for the volatility
process is maintained at the same value: (�1, �2) /(1 − �) = (−5.0, −2.0). By varying � and �st accordingly, we
are able to study the performance of our SMC algorithm in situations where volatility regimes are well separated
or not (Fig. 2).

We initialize the filtering strategy with very diffuse independent draws from a multivariate normal centered at the
parameters’ and states’ true values, summarizing the joint posterior density at time t = 0. Using the current notation,
we set M = 3000. All simulations were performed using a 1.6 GHz Pentium 4 CPU and each filtering iteration took
less than 1 s. Pseudo random number were generated using standard Fortran 90 libraries.

Figs. 3–6 show the sequentially predicted log-volatility for all simulated time series along with the true value of
log-volatility. They also display the true regimes at time t, st , and the predicted probability for the high volatility
state, i.e., P̂ r (st = 2|Dt). Also, in the caption of each figure, the misclassification rate of st estimated based on
ŝt = arg max [Pr (st = i)] is presented. One can see that in the first three datasets the proposed filtering strategy is
handling well the task of sequentially estimating the state vectors �t and st of the model. Overall, the algorithm is
able to correctly identify clusters of high and low volatility and, as one would expect, the further apart the volatility
regimes are the easier it is for the filter to flag the regimes. This is made clear by comparing the misclassification rates
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Fig. 8. Posterior mean, 5 and 95% quantiles of� for the second simulated data (�=0.7):�1, 	1,�,�2, log (p11/ (1 − p11)), and log (p21/ (1 − p21)).

in Dataset 1 and Dataset 3. In the less stable example (Fig. 6) where switches occur all the time, the filter is not as
accurate as in the other examples, however, it still does a reasonable job estimating the volatility state �.

The sequential learning process for the fixed parameters of the model can be seen in Figs. 7–10. These plots show
the estimated posterior mean at time t for each parameter together with approximate credible intervals (two standard
deviations around the posterior mean), along with the true value for each parameter. Here we can see that even while
losing some efficiency along the way, a characteristic shared by all particle filters, the filter is able to correctly estimate
the fixed parameters, presented in Table 1.

In all examples the values of a and b were determined by a discount factor � = 0.85 which implies a = 0.824 and
b = 0.566. As a side note, we explored the impact of the choice of � in the performance of the filter, and in these
examples any � in (0.50, 0.99) presented results similar to the ones presented here. West and Harrison (1997) argue
that � should be chosen between 0.8 and 0.99 as a function of the amount of information that the modeler is willing to
preserve in the filtering process.

Finally, Fig. 11 shows the ratio between the cumulative predictive power of models estimated with k = 2 and 1.
This is basically a Bayes factor plotted over time to check the predictive performance of a MSSV against a SV. This
exercise was mainly intended to justify the use of the MSSV model by showing that if it is true that a time series
presents different volatility levels, one should use a SV model that incorporates possible structural changes. This fact
is emphasized by Fig. 12 where the cumulative difference in the mean square predictive error for the volatility is
presented. In all examples the MSSV performs better than a simple SV model and as noted before the difference is
more evident in situations where the volatility regimes are very distinct. It is important to point out that even in Dataset
4 where changes occur very frequently the MSSV model performs better than a simple SV.
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Fig. 9. Posterior mean, 5 and 95% quantiles of � for the third simulated data (�=0.9): �1, 	1,�,�2, log (p11/ (1 − p11)), and log (p21/ (1 − p21)).

4.2. Real data: Ibovespa

We now apply the proposed algorithm (with two regimes) to the IBOVESPA stock index (Sao Paulo Stock Exchange)
from 01/02/1997 to 01/16/2001 (1000 observations). This period includes a set of currency crises, such as the Asian
crisis in 1997, the Russian crisis in 1998 and the Brazilian crisis in 1999 all of which directly affected emerging
countries, like Brazil, generating high levels of uncertainty in the markets and consequently high levels of volatility
(see Fig. 13). For this reason we decided fit a two regime MSSV model.

To give a practical perspective to this applied example, we set aside a small fraction of the (initial part) of the data
for prior elicitation. For this small fraction, we have run So et al.’s (1998) MCMC algorithm and used the draws for
the last time period as a sample from �, xt for t = 0 in our sequential analysis.

The Ibovespa appears in Fig. 13 along with the estimated (posterior mean) st and �t . The vertical lines indicate key
market events that identify what agents in the markets would refer to as the beginning and end of the crisis (Table 2).
It can be seen that our sequential estimation scheme is able to identify these structural changes in the Ibovespa index
by accurately flagging moments of higher volatility through the discrete state prediction.

Fig. 14 shows the sequential estimation of the fixed parameters in the model. It is interesting to point out that in
accordance with findings by So et al. (1998), the persistence parameter � is no longer overestimated. By allowing
discrete shifts in the volatility level the posterior mean for � is no longer close to one (see Table 3). The diagonal
elements of the transition probability matrix for the discrete states are estimated to be high with E (p11|DT ) = 0.993
and 0.964. This implies that the duration in each regime is quite long with a predominance of the low-volatility regime,
which is a fact also encountered by So et al. (1998) when analyzing the US S&P500 series. Fig. 15 compares the
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Table 2
Currency crisis—some key dates

07/02/1997 Thailand devalues the Baht by as much as 20%
08/11/1997 IMF and Thailand set a rescue agreement
10/23/1997 Hong Kong’s stock index falls 10.4%. South Korea won starts to weaken
12/02/1997 IMF and South Korea set a bailout agreement
06/01/1998 Russia’s stock market crashes
06/20/1998 IMF gives final approval to a loan package to Russia
08/19/1998 Russia officially falls into default
10/09/1998 IMF and World Bank joint meeting to discuss the global economic crisis

The Fed cuts interest rates
01/15/1999 The Brazilian government allows its currency, the Real, to float freely by lifting exchange controls
02/02/1999 Arminio Fraga is named President of Brazil’s Central Bank
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predictive power of the MSSV with k = 2 against a SV model on the Ibovespa index. The better performance of the
MSSV reinforces the theory that financial time series present blocks of high and low volatility and ignoring this fact
yields misspecified volatility persistence.
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Table 3
Posterior summary for �

Model 95% credible interval E
(
�|DT

)
SV (0.9325;0.9873) 0.9525
MSSV (0.8481;0.8903) 0.8707
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Fig. 15. Ibovespa: Bayes factor—MSSV vs. SV.

5. Final remarks

In this article we developed and implemented a simulation-based sequential algorithm to estimate a univariate Markov
switching stochastic volatility (MSSV) model as described in So et al. (1998). The use of simulated examples was
intended to show the performance of the proposed method while the Ibovespa example shows its applicability to real
market problems.

The simulated examples were able to show the ability of the sequential algorithm to perform accurate sequential
inferences. The more distinct the volatility regimes are the better is the performance of the sequential filter presented. The
presentation of Dataset 4 with highly unstable volatility regimes aimed to touch on the limitation of the method—this is
a situation where not a lot of information is carried from one time point to the next and therefore, a sequential estimation
procedure does not perform very well. One should be aware of this problem despite of the fact that this example is
not representative of the applications that the MSSV model and the particle filter presented here hope to address. It is
important to highlight that we were also able to show, by comparing predictive power, that in all simulated examples
the MSSV outperforms a simple stochastic volatility (SV) model (k = 1).

In the Ibovespa example we were able to successfully separate moments of high risk from moments that presented a
calm trade pattern. We were also able to link the volatility regimes to well defined emerging market crisis. By including
structural changes the model no longer overestimates the volatility persistence and the idea of non-stationarity is
eliminated. In this context the MSSV (k = 2) outperformed a simple SV model in predictive power by allowing
sequential predictions to react faster to market events.
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