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Abstract

Jagannathan and Ma (2003) argue that with no-short sale constraints in place, the sample covari-
ance matrix performs as well as more sophisticated covariance matrix estimates in reducing portfo-
lio risk exposure. This is still argued considering more general convex gross-exposure constraints.
Introducing a common Bayesian framework, we empirically explain why artificially constraining
portfolio weights is suboptimal from a statistical decision theoretical point of view. Considering
portfolio allocations as decision rules, we introduce a basic actual bayes risk function and check for
admissibility of constraining weights with respect to a general dynamic Bayesian portfolio alloca-
tion model. We concentrate on global minimum variance portfolios. Based on simulation exercises
and an empirical investigation on daily AMEX/NYSE returns, we provide evidence of inadmissi-
bility/suboptimality of artificially imposed portfolio constraints in an expected utility framework,
being therefore unconsistent with a standard von Neumann-Morgenstern rationality assumption.

Keywords: Risk Reduction, DLM, shrinkage estimators, portfolio allocation,
no-short-sale, gross-exposure contraints, Large Portfolios, Expected Utility

1. Introduction

Portfolio theory and selection has been one of the fundamental theoretical develop-

ment in finance. Since the seminal work in Markowitz (1952a) and Markowitz (1952b),

portfolio selection in a mean-variance framework represents, by far, the most common

formulation of portfolio choice problems. Markowitz portfolios, have had indeed a deep

impact on financial economics literature, and more widely, is considered a milestone in

modern finance. To implement these portfolios in practice, one has to estimate the mean

and covariance matrix of asset returns. The majority of the portfolio choice literature

falls under the heading of plug-in estimation. The econometrician estimates the parame-

ters of the data generating process through sample moments and plugs them into either
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an analytical or numerical solution to the investor’s optimization problem. However, the

implementation of mean-variance portfolios with sample moments estimates is notorious

for producing extreme weights that highly fluctuate over time and poorly perform out-of-

sample. The instability of portfolio weights is mainly due to estimation error, especially on

the expected returns, as pointed out in Chopra and Ziemba (1993) and Merton (1980). For

this reason, researchers have recently focused on the minimum-variance portfolios, which

rely solely on the covariance structure, and supposedly perform better out-of-sample. Al-

though disregard the mean estimation, Global Minimum Variance Portfolios still suffer

with instability due to covariance estimation errors. This is more pronounced when the

portfolio size N is large (see Fan et al. (2008)), getting close to the sample size T. Several

solutions have been proposed in the literature to mitigate estimation error. Jagannathan

and Ma (2003), propose to artificially non-negative constraint allocations to induce port-

folio stability. Likewise, Fan et al. (2008), DeMiguel et al. (2009a) and Brodie et al.

(2008) propose to use gross-exposure constraints essentially treating the portfolio alloca-

tion problem as a penalized regression. More generally, imposing artificial constraints is

argued to help in stabilize the weights, reducing risk exposure, through covariance reg-

ularization, regardless the type of covariance estimator, as reported in Jagannathan and

Ma (2003). However, according to Green and Hollifield (1992), these constraints are likely

to be wrong in population and hence introduce specification error. Extreme negative and

positive weights unlikely are due solely on estimation error, but depend on the unknown

structure of the covariance matrix. Other techniques have been suggested to reduce sen-

sitivity of Markowitz portfolios trying to get more stable portfolio weights. Jorion (1986)

proposed a James-Stein estimator for the means, while Ledoit and Wolf (2004) proposed

a shrinkage estimator of the covariance matrix towards either the indentity or a factor

model covariance. More general Bayesian Portfolio allocation approaches are considered

in Polson and Tew (2000), Frost and Savarino (1986), Jorion (1986), McCulloch and Rossi

(1990), Pastor and Stambaugh (2000) and Pastor (2000). Bayesian portfolio optimization

not only helps in reducing estimation error through the specification of the prior, but

addresses also parameter uncertainty integrating out the state parameters. The portfolio

allocation is then maximized with respect to the predictive distribution of the returns.

Finally resampling base procedure are proposed in Michaud (1998) among the others,

aimed to address parameter uncertainty ex-post in certainty equivalent framework. We

focus on the Global Minimum Variance Portfolio [GMVP] just as in Jagannathan and Ma

(2003), Brodie et al. (2008) and DeMiguel et al. (2009a) among the others. The goal of
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the paper is to empirically investigate the admissibility of constrained plug-in portfolio

allocations, using sample covariance estimates, as optimal decision rules in an expected

utility maximization framework. Essentially, we want to point out the suboptimality of

imposing artificial portfolio constraints just for regularization purposes, arguing that care-

ful covariance estimates are marginally more relevant for risk reduction, especially in large

portfolios. In the portfolio allocation problem, the weights wt are interpreted as outcomes

of a decision process wt = a(θt), in which the action a ∈ A is the functional form of the

weights. This matches the standard definition of action in the statistical decision theoret-

ical literature, defined as a : θt → wt, i.e. a function mapping the state (the covariance) in

an outcome (the weights). The true states are normally unobservable therefore the agent

is assumed to choose among different actions whose consequences cannot be anticipated.

In an expected utility framework this is managed assigning a quantitative value to the

investor’s utility function for each outcome wt and a probability distribution p(θ). The

key point is that constraining portfolio weights define an action tha can be compared to

the others on the basis of the expected utility. Under the von Neumann-Morgenstern ra-

tionality assumption the representative investor is assumed to choose the action maximizes

the expected value of the utility function given the distribution of the states. In the min-

imum variance framework this translates to rank the actions on the basis of portfolio risk

exposure, then choosing the one minimizes it. We do that as a first step discriminating

different portfolio decision rules on the basis of portfolio risk exposures. This classic horse

race is extended defining a common Bayesian framework in which each of the portfolio

decision rules is taken under the same predictive distribution, allowing to isolate the effect

of the action on the portfolio out-of-sample performances. Based on simulation examples

and a real dataset, we find that artificially constraining portfolio weights for risk reduction

purposes, turns out to be a dominated strategy, both in terms of expected utility and

risk exposure. From a statistical decision theory standpoint this translate in inadmissibil-

ity, meaning, contradicts the standard von Neumann-Morgenstern rationality assumption.

Both simulation and empirical analysis point out the relevant of imposing dynamics and

structure on the covariance estimates regardless artificial constraints.

The main contributions of the paper are the following: (1) we investigate in a stan-

dard expected utility maximization framework different portfolio strategies stressing the

incompatibility of constraining weights with a standard rationality assumption in a deci-

sion process. We (2) extend the expected utility comparison defining a common Bayesian

framework, isolating the effect of the action on a general risk function under a predic-
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tive distribution. Yet, (3) we propose a dynamic Bayesian covariance estimator with a

sequentially defined shrinkage prior in the spirit of Ledoit and Wolf (2003).

The rest of the paper is organized as follows. In Section 2 we recall a general portfolio

selection problem and the specific case of minimum variance framework. Section 3 reports a

first set of simulation results comparing the different portfolio decision rules in an expected

utility framework with a standard dynamic Bayesian covariance estimator as benchmark.

Then Section 4 generalize the expected utility framework to a common Bayesian framewor

by which we investigate constraining portfolio rules admissibility with on the basis of a

standard decision theoretical inspired risk function. Section 5 and 6 report respectively

the benchmark dynamic Bayesian covariance estimator with a sequential shrinkage prior

specification and the simulation results relatively decision rules admissibility. Section 7

implements the common Bayesian framework analysis on a real daily dataset, while finally

Section 8 report the concluding remarks.

2. The Portfolio Selection problem

2.1. A general expected utility formulation

Let us introduce a standard portfolio selection problem in which a representative in-

vestor aims to maximize the expected value of a general, continuosly differentiable, utility

function. In the static decision problem, the investor aims to form a portfolio at T + τ ,

with τ the investment horizon. Let us consider an N-dimensional vector of prices at

each time t as Pt and suppose τ = 1. The linear returns for the ith asset are com-

puted as Rt = (Pt+1/Pt) − 1. Given a risk-free rate Rft the observed excess returns are

rt = Rt − 1NR
f
t . The vector of relative weights w = {w1, ..., wN} is defined as

w =
diag(Pt)c

c′Pt
such that rp,t = w′rt (1)

with c = {c1, ..., cN} the dollar amount invested in each stock. The excess returns are

assumed to have a general distribution function rt|θt ∼ p (rt|θt), where θt ∈ Θ being the

unknown distribution parameters. Suppose the investor want to allocate the wealth on

the N risky securities. From a decision theoretical point of view the vector of relative

weights can be interpreted as the outcome of a decision process developed combining an

action a ∈ A and the state of nature θt ∈ Θ, meaning a : θt → wt such that wt = a(θt),

(see Parmigiani and Inoue (2009) for more details). In the portfolio allocation problem the

action is the functional form of the weights, the state of natures are the moments estimates
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and the outcome is the portfolio weights. The true states are unobservable so the investor is

formally assumed to choose among different actions whose outcomes cannot be completely

anticipated. Expected utility theory handles this choice by assigning a quantitative utility

to each outcome wt and probability distribution to θt. The representative investor is then

assumed to satisfy the von Neumann-Morgenstern [NM] rationality assumption, selecting

the action a ∈ A which maximizes the expected value of the resulting utility under the

state probability distribution.

Most of the reference literature on portfolio allocation has been casted in a certainty

equivalence framework, in which the underlying distribution is assumed to be completely

identified, and the optimal portfolio is the solution of

w∗t ∈ arg maxErt|θt
[
U
(
w′trt

)]
≡
∫
R
U
(
w′trt

)
p
(
rt|θt = θ̂t

)
drt

s.t. wt ∈ C (wt) =
{
wt|w′tι = 1

}
(2)

where ι = {1, ..., 1}′ is an N-dimensional vector of ones, C(wt) is the convex set of feasible

portfolio choices andR = R the space of returns. Finding the optimal solution to (2) is then

traditionally defined as a two-steps procedure in which the econometrician firstly estimates

θ̂t from the data, then solves (2) for θt given. This approach ignores estimation risk and

parameter uncertainty (see Jorion (1986) and Klein and Bawa (1976) for more details).

Estimation error is directly related to portfolio size, while parameter uncertainty increases

as the amount of information (sample size) decreases. Yet, in general, state parameters

are neither known, nor observable, implying that p(rt|θ̂t = θt) is not completely specified.

Several solutions have been proposed in the literature to mitigate estimation error and

parameter uncertainty. Jagannathan and Ma (2003), DeMiguel et al. (2009b), DeMiguel

et al. (2009a) and Fan et al. (2008) among the others, proposed to modify (2) plugging

artificial constraints solving the following

w∗t ∈ arg maxErt|θt
[
U
(
w′trt

)]
≡
∫
R
U
(
w′trt

)
p
(
rt|θt = θ̂t

)
drt

s.t. wt ∈ C (wt) =
{
wt|w′tι = 1, ‖wt‖1 ≤ c

}
(3)

The optimal allocation still comes from a two-steps procedure, however imposing ‖wt‖1 ≤
c, helps in stabilize the portfolio weights through a regularization effect on the historical

covariance matrix1. This reduces the effect of estimation error on portfolio risk exposure.

1The regularization effect comes from a reduction of the higher eigenvalues come from estimation error
and an increasing of the lower eigenvalues of the covariance matrix due to sampling errors
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Defining c = 1 we get the no-short sales constraints as in Jagannathan and Ma (2003)

and DeMiguel et al. (2009a), while for other c we resort to the general gross-exposures in

Fan et al. (2008). However (3) does not address parameter uncertainty since the whole

procedure is still a plug-in approach. The regularization benefit just comes from a purely

mathematical optimization argument.

On the other hand, parameter uncertainty, together with estimation risk, can be miti-

gated through a Bayesian framework in which θt is assumed to be a random quantity on

itself. The quantative utility of the outcome wt = a(θt) is averaged over the predictive

distribution of the excess returns as proposed in Jorion (1986), Frost and Savarino (1986),

Klein and Bawa (1976), Pastor (2000) and Polson and Tew (2000) among the others. The

optimal portfolio allocation problem becomes as follows

w∗t ∈ arg maxErt

[
U
(
w′trt+1

)]
≡
∫
R
U
(
w′trt+1

)
p(rt+1|r)drt+1

s.t. wt ∈ C (wt) =
{
wt|w′tι = 1

}
(4)

where

p(rt+1|r) ∝
∫

Θ
p(rt+1|r, θt)p(θt|r)dθt with p(θt|r) ∝ p(r|θt)p(θt) (5)

with r the (N × T ) matrix of returns upto time t, p(θt|r) the posterior distribution of the

parameters and p(rt+1|r, θt) the likelihood. Essentially the predictive distribution averages

the probability of a future observation over the posterior distribution of the states, such

that the future returns depend juts on past returns. The Bayesian approach (4) helps in

accounting for parameter uncertainty integrating out the states in (5) and reducing the

estimation error through the prior p(θt) specification.

Other solutions proposed to both reduce estimation error and account for parameter

uncertainty from a frequentist point of view are due to Michaud (1998) among the others.

The bottom line is to resample the vector of relative weights, bootstrapping returns in a

parametric setting. This procedure, however, involves solving the portfolio allocation first

in plug-in framework, then averaging out the re-sampled weights. This means to address

estimation error and uncertainty ex-post. In the Bayesian setting insetad, uncertainty is

taken into account ex-ante, before solving the investor’s optimization problem. A brief

description of a re-sampling based approach is provided in the appendix. Next section

focus on the minimum-variance portfolio just as in Jagannathan and Ma (2003), Fan et al.

(2008) and DeMiguel et al. (2009a).
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2.2. Minimum Variance Portfolio Selection

Let us consider the same risk-averse investor, with τ = 1 as investment horizon, who

must allocate funds between a portfolio of N risky assets. As before the relative weights

represent the outcome of a decision process through the action a given the state of nature

θt. Returns Rt and linear excess returns rt are defined as in Section 2.1. Suppose rt ∼
N (µt,Σt), with µt = {µ1,t, ..., µn,t} and Σ = {σi,j,t} respectively mean and covariances,

such that θt = (µt,Σt)
2. The excess return of the portfolio rp,t = w′trt is normal with

mean µp,t = w′tµt and variance σ2
p,t = w′tΣtwt. Considering a quadratic utility function. ,

the standard, two-steps, portfolio allocation problem becomes

w∗t ∈ arg maxErt|θ
[
U(w′trt)

]
≡
∫
R
U(w′trt)p(rt|θt)dYt = w′tµt −

γ

2
w′tΣtwt

s.t. wt ∈ C(wt) =
{
wt|w′tι = 1

}
(6)

where γ > 0 is the risk aversion parameter. Let us consider zero-mean multivariate returns,

i.e Yt = rt−µ, such that Yt|Σt ∼ N(0,Σt), just as in Jagannathan and Ma (2003) and Fan

et al. (2008) among the other. This is economically plausible for daily returns. Yet the aim

is to isolate the comparison of decision rules on covariance estimates. The mean-variance

portfolio allocation problem is rewritten as

w∗t ∈ arg maxEYt|θt
[
U(w′tYt)

]
≡
∫
Y
U(w′tYt)p(Yt|θt)dYt = −1

2
w′tΣtwt

s.t. wt ∈ C(wt) =
{
wt|w′tι = 1

}
(7)

Equation (7) represents the well known Global Minimum Variance Portfolio [GMVP].

The γ > 0 risk aversion parameter just shifts the optimal solution then disappear in the

optimal programming. Just as in the general portfolio allocation problem, estimation error

and paramater uncertainty play a key role in getting valuable out-of-sample results. The

artificial constraining approach of Jagannathan and Ma (2003) translates to

w∗t ∈ arg maxEYt|θt
[
U(w′tYt)

]
≡
∫
Y
U(w′tYt)p(Yt|θt)dYt = −1

2
w′tΣ̂twt

s.t. wt ∈ C(wt) =
{
wt|w′tι = 1,wt ≥ 0

}
(8)

with Σ̂t the standard historical covariance estimator at time t. The L1-norm constraints

supposedly have a regularization effect on the covariance matrix. This is formalized in

Proposition 1 in Jagannathan and Ma (2003) as follows:

2Here, σi,j,t denotes the covariance between stock ith and jth at time t, and σi,i > 0.
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Proposition 1 (Jagannathan and Ma (2003)). Let Σ̂ be the historical covariance es-

timator, and δ = (δ1, ...δN ), λ = (λ1, ..., λN ) being respectively the lagrange multipliers for

the nonnegativity constraints, i.e. w ≥ 0 and the upper bounds w ≤ w. Then plugging

Σ̃ = Σ̂ + J with J = (δ1′ + 1δ′)− (λ1′ + 1λ′) (9)

in an unconstrained mean-variance optimization is equivalent of using the historical Σ̂

covariance estimator with the non-negativity and upper bounds.

Essentially, imposing portfolio constraints, regardless the covariance estimates, is argued

to mitigate estimation error reducing portfolio risk exposure as a whole. On the other

hand the Bayesian approach defined in (4) translates in the minimum-variance portfolio

choice as

w∗t ∈ arg max

∫
Y
U(w′tYt+1)p(Yt+1|Y)dYt+1 = −1

2
w′tΣt+1|twt

s.t. wt ∈ C (wt) =
{
wt|w′tι = 1

}
(10)

where Σt+1|t = V ar(Yt+1|Dt), is the covariance matrix under the predictive distribution.

In the GMVP case the predictive is easily defined as

p(Yt+1|Y) ∝
∫

Σ
p(Yt+1|Σ)p(Σ|Y)dΣ with p(Σ|Y) ∝ p(Y|Σ)p(Σ) (11)

Given Yt|Σt ∼ N(0,Σt), it is quite easy to see that the key point is the definition of the

prior for the covariance p(Σt). Through p(Σt) not only we define the predictive given the

likelihood, but we can impose some exogenous identification structure, for instance from an

asset pricing model, just as proposed in Pastor (2000) and Pastor and Stambaugh (2000)

among the others. Finally, the resampling based optimal portfolio allocation, is briefly

described in the appendix.

Given θt = Σt, the outcome wt = a(Σt) depends on the functional form of the weights,

i.e. the action, and the covariance estimates, i.e. the state of nature. The von Neumann-

Morgenstern rationality assumption in the Minimum-Variance framework assumes a ra-

tional investor chooses the pair functional form and covariance estimates to minimize the

portfolio variance.
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3. Expected Utility maximization: Constraining weights vs. Bayesian alloca-

tions.

Under the von Neumann-Morgenstern [NM] rationality assumption, the portfolio al-

location problem, involves chosing the action, i.e. vector of weights, that maximizes the

utility function averaged over state probabilities. Broadly speaking the NM rationality as-

sumption allows us to rank the portfolio selection approaches, which provide the weights,

based on their expected utility. In the minimum variance framework the representative

investor is assumed to chosen the functional form and the covariance estimates that mini-

mize portfolio risk exposure. The quantitative value of the expected utility is taken con-

ditional to the action chosen and the covariance distribution, depending on the outcome

ŵt = a(Σ̂t), with a the functional form of the weights and Σ̂t the covariance estimate.

In this section we point out that, in an expected utility maximization framework, con-

straining portfolio weights, is not “acting rationally” under the NM assumption. In other

words, we provide some empirical findings that, the action (weights functional form) and

the states (covariance estimates) implied by Jagannathan and Ma (2003), and its gross

exposure generalizations, are not compatible with a rational expected utility maximization

framework. This is done through two simulation examples, comparing the expected value

of the utility function for each of the investigated portfolio selection strategies, reported

below.

3.1. Simulation Design

The simulation framework generates a set of time-dependent covariance matrices. We

used a RiskMetrics simulation methodology to impose heteroschedasticity getting a return

dynamics closer to reality. Let us consider K simulation for T periods of N returns

Σ(i) =
(

Σ
(i)
1 , ...,Σ

(i)
T

)
R(i) =

(
R

(i)
1 , ..., R

(i)
T

)
for i = 1, ...,K (12)

where Σ
(i)
t is an N ×N covariance matrix at time t and R

(i)
t is an N × 1 vector of returns.

The ith step is as follows

Σ
(i)
t = λΣ

(i)
t−1 + (1− λ)R

(i)
t R

(i)′

t

R
(i)
t = Σ

(i)
t εt with εt ∼ NID (0, IK) (13)
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such that

R
(i)
t ∼ N

(
0,Σ

(i)
t

)
(14)

with Σ
(i)
0 as initial value and λ = 0.97 for daily data. Notice Σ

(i)
t differs across simulations.

The benchmark index, i.e. the market, is constructed at every step t as an equally weighted

average of the synthetic returns

R
(i)
I,t =

N∑
j=1

xjR
(i)
j,t , i = 1, ...,K with xj = 1/N (15)

The benchmark is used as target covariance structure in the Ledoit-Wolf shrinkage estima-

tor, as well as to construct the factor model in (29). We simulate two years of daily data,

T = 504 for K = 20 simulations. The initial Σ
(i)
0 is the historical covariance matrix of an

N-dimensional randomly selected subset of stocks from the NYSE/AMEX. Some further

description of the dataset is provided below. The simulation example is split in two parts:

(a) we fix the portfolio and change the sample size, and (b) fixing the sample and changing

the portfolio size. The aim is to investigate the effect of portfolio and sample size on the

comparison of portfolio decision rules.

3.2. Portfolio strategies

In this section we describe the portfolio decision rules compared to constraining alloca-

tions. Since these models are familiar to most readers, we provide just a brief description

of each one. The list of the model considered is reported in Table (1). The naive 1/N port-

folio (ew) involves holding an equally weighted portfolio wew
t = 1/N at each time t. This

strategy does not deal with neither any estimation nor optimization representing therefore

a challenging benchmark in terms of, both estimation risk and parameter uncertainty.

[Insert Table 1 here]

The gross-exposure [GE] and the no-short sales strategies [JM] are respectively reported

in Fan et al. (2008), DeMiguel et al. (2009a) and Jagannathan and Ma (2003). The JM

action involves a constrained quadratic optimization, where the covariance estimate is

from the usual MLE sample covariance estimation. The constraints are represented by

non-negativity of portfolio weights and an upper bound diversification constraint. In the

following simulation w = 1 meaning, we can invest max 100% of the portfolio in one
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asset. The GE portfolio decision rule is a generalization of the JM framework as sug-

gested in DeMiguel et al. (2009a). Instead of no-short sales the GE involves some negative

weights plugging an L1-norm penalization on the minimum variance objective function.

The purpose of the artificial constraints in Fan et al. (2008), DeMiguel et al. (2009a) and

Jagannathan and Ma (2003), is stabilize the portfolio weights mitigating estimation risk

through an artificial covariance regularization. The Ledoit-Wolf [LW] strategy is the un-

constrained plug-in portfolio allocation in (7), plugging the shrinkage covariance estimates

developed in Ledoit and Wolf (2003). The target covariance is the one-factor model co-

variance matrix. Yet, the RiskMetrics [RM] involves a closed form for the weights (the

action) using an exponential weighted moving average estimates of the covariance matrix

(the state parameter), which is then plugged in (7). The bootstrap portfolio [BU] alloca-

tion is inspired to Michaud (1998) generating a sample of weights plugging a resampled

covariance in (7). Finally a simple benchmark Bayesian portfolio strategy is developed

following a standard updating recursion. Let us suppose that the initial prior is

(Σ0|D0) ∼ IW (b0,S0) (16)

with Dt = (Yt, Dt−1) the information set. The posterior at time t-1 is defined as

• (a) posterior at time t-1 :

(Σt−1|Dt−1) ∼ IW (bt−1,St−1) (17)

• (b) prior at time t is

(Σt|Dt−1) ∼ IW (δbt, δSt−1) (18)

• (c) such that the posterior at time t becomes

(Σt|Dt) ∼ IW (bt,St) with bt = δbt−1 + 1, St = δSt−1 + Y′tYt (19)

• (d) given Yt|Σt ∼ N(0,Σt) the predictive p(Yt+1|Dt) is

Yt+1|Dt ∼ T (0,St, bt) (20)

with T (0,St, bt) a multivariate T-student distribution with St scale parameter and
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bt degrees of freedom.

From (20) we can define the predictive covariance matrix used in (4) as Σt+1|t = var(Yt+1|Dt) =

E(var(Yt+1|Σ)|Dt) + var(E(Yt+1|Σ)|Dt).

3.3. Simulation results: Out-of-sample wealth risk exposure minimization

In each simulation the risk exposure minimization portfolio performances are analyzed

backtesting each of the portfolio strategies over six months of out-of-sample daily returns

with daily rebalancing. Rolling sample estimation is used except for the Bayesian strategy

and the RiskMetrics since they properly discount past information through a decay factor.

Given a sample M = 252 we generate T − M = 132 out-of-sample portfolio returns,

meaning, six months of trading day returns with daily rebalancing. We suppose the aim

of the representative investor is to minimize the riskness of net wealth returns generated

by each a self-financing minimum variance portfolio strategy. The realized gross-returns

in the kth simulation from the strategy s = 1, ...S are defined as

rsk,t+1 = ws′
k,trk,t+1, t = M + 1, ...T (21)

with rk,t+1 the realized simulated asset returns at time t+1, and ws
k,t the portfolio alloca-

tion from the strategy s, in simulation k, chosen ex-ante at time t. The wealth dynamics,

net of the transaction costs tc, is written as

Ws
k,t+1 = Ws

k,t(1 + rsk,t+1)

1− tc×
N∑
j=1

∣∣wsj,k,t+1 − wsj,k,t+
∣∣ (22)

where wsj,k,t+1 is the relative portfolio weight in asset j, at time t+1, under portfolio

rule s, in simulation k, and wsj,k,t+ is the same weight right before rebalancing. For each

simulation, the realized net return on wealth for strategy s is given by

rs,Wk,t+1 =
Ws

k,t+1

Ws
k,t

− 1 (23)

The out-of-sample performance/riskness measure is essentially the standard deviation of

(23) as a proxy of net return on wealth riskness. We set the proportional transaction costs

tc equal to 50 basis point per transaction as reported in Balduzzi and Lynch (1999). In

the first simulation M is fixed while portfolio sizes span from N = 50 to N = 250. We

run K = 20 simulations. The results reported are the averages across the K simulations.

Table (2) reports a first set of simulation results.
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[Insert Table 2 here]

Risk Wealth represents the annualized standard deviation of (23). For N = 50 the BC

rule reports a slightly lower risk exposure than the competing portfolio decision rules. The

highest risk exposure corresponds to the naive EW strategy. This is consistent with the

results in DeMiguel et al. (2009a). They showed that for a N = 48 dimensional portfolio

the 1/N strategy underperforms most of the competitors in terms of risk exposure. The

GE strategy reports the highest turnover. The same is true in the N = 100 case as well

as the other portfolio sizes. The JM still reports the lowest turnover. However it suffers

with lack of diversification since around 90% of the available assets are not used in the

portfolio allocation. Yet, the BC reports the lowest wealth volatility, even though the JM

is quite close. The latter, however, does not represents a financially reliable alternative

since invests in 19 stocks out of 150. There is an evident lack of diversification. The same

situation persists for N = 200 and is extreme for N = 250. Indeed the JM portfolio rule

essentially invest in one stock without rebalancing. This is due to the enormous amount

of estimation error in the input historical covariance matrix since N/M ≈ 1, as suggested

by Random Matrix theory standard arguments. With reference N = 250, the BC and the

LW are almost equivalent. This is consistent with Ledoit and Wolf (2003), since when

N/M ≈ 1 is the situation where the shrinkage estimator is mainly justified. Recall that

the BC does not imposed any particular on the covariance recursion. Interestgly the naive

EW portfolio rule reports the lowest turnover. Yet, this is clearly due to the absence

of estimation in the naive strategy. There is neither estimation error nor optimization

algorithms, therefore, the portfolio weights resulting are more stable through rebalancing.

This is consistent with DeMiguel et al. (2009a). Overall the BC reduces risk exposure

(expected utility maximization) fairly better than the other strategies.

The second simulation example sets the portfolio size toN = 100 changing the insample

length span from M = 120 to M = 210. We do not report the value for M = 250 since

overlaps the aforementioned statistics for the first simulation example. Table (3) reports

the relative results.

[Insert Table 3 here]

The JM still suffers with diversification issues leading essentially to financial irrelevant/corner

portfolio allocations. The EW reports overall the lowest turnover. Yet, this is due to the

absence of estimation and optimization characterizes the naive strategy, which leads to
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highly stable weights, consistently with the findings in DeMiguel et al. (2009a). Overall

the BC reports the lowest risk exposure through insample sizes. However the LW portfolio

rules is fairly comparable, delivering financially stable and diversified allocations. This

suggests the relevance of imposing structure on the covariance estimation. Let us recall

that the BC does not consider any particular structure in the covariance estimates. On

the other hand the LW incorporates a very simple dynamics through the rolling sample

estimation procedure.

4. Decision Rules, Admissibility and a common Bayesian framework

Section 4 shows that the action and covariance estimate implied by JM and GE are

not generally preferred in an expected utility maximization framework. These strategies

therefore are essentially incompatible with the standard von Neumann-Morgenstern ratio-

nality assumption, meaning, they are incompatible to an expected utility maximization

framework since apparently constantly dominated by alternative, unconstrained, actions

and covariance estimates. However, the quantitative value assigned to the utility from the

outcome wt = a(Σ), is averaged over different distribution assumptions for each decision

rule. Indeed, while the predictive distribution is used in the Bayesian framework, the like-

lihood is the distribution under which we average the utility from the decision outcome

for JM, GE and the others, i.e. Ledoit-Wolf, RiskMetrics. Therefore, one could argue

the superior performance of the Bayesian approach in terms of out-of-sample wealth risk

exposure, can be essentially driven by the forecasting property nested in the predictive

distribution. This is not the case in the likelihood case since the two-steps standard ap-

proach assumes past information is all we need to forecast the future covariance structure.

Then is not really understandable if the superior out-of-sample risk reduction comes from

either avoiding artificial constraints or using the correct action and state estimates. Im-

posing no-short sales on the Bayesian portfolio does not solve the issue since (a) we assume

there are not market frictions is terms of short-sales, and (2) the conceptual difference in

the distribution used to average out the utility are still different. What we propose is a

common Bayesian interpretation of the frequentist approaches used as alternative to the

Bayesian one. By using the results in Jagannathan and Ma (2003) we map the constraining

portfolio rules in the unconstrained case, defined a proper shrinking bayesian covariance

estimator. The aim is to have the same action, functional form of the weights, that is the

closed form, such that we can discriminate among different portfolio decision rules, which

are reconduced to prior specification. Given the functional form of the weights we can
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interpret each prior specification as the recipe turning the data into the action, meaning

the covariance estimates. In other words, defining a common bayesian interpretation of

the JM and GE rules, other than the others, we can essentially compare among different

decision rules. The purpose is then check for admissibility of each of them. This is done

empirically discriminating decision rules on the basis of a proper risk function. We do not

compare analytically the prior distributions since, given the likelihood, each posterior is

optimal with respect to its prior. The predictive distribution is the probability of having

a future observation under the likelihood averaged over the posterior distribution. There-

fore, since the likelihood is given, and each posterior is optimal conditional on the prior,

is hard to analytically investigate admissibility of the prior relative to JM rather than

GE, with respect to a benchmark Bayesian estimator. We assign a quantitative score to

each portfolio decision rule on the basis of a risk function R(w̃, ŵ), where w̃ is the Oracle

decision rule, while ŵ is the portfolio decision rule chosen by the representative investor.

Generally speaking a decision rule w0(θ) is said to be inadmissible, if there exists another

rule w1(θ) such that R(w̃,w1) ≤ R(w̃,w0) for all θ ∈ Θ, and R(w̃,w1) < R(w̃,w0) for

some θ ∈ Θ, where R(w̃, ŵ) is a general risk function. The risk function we refer to for

the minimum variance portfolio decision rule is formalized in Proposition 2.

Proposition 2. Let us consider zero-mean multivariate normal returns Yt|Σ ∼ N(0,Σ),

such that θ = Σ, and a standard quadratic mean-variance utility function. The action

a ∈ A, is a function mapping the data into the outcome ŵt = a(Σ̂). The regret loss

function is defined as

L(w̃, ŵt) = Lu(w̃, ŵt)− inf
ŵt∈A

Lu(w̃, ŵt) ≡ sup
w
U(w′Yt+1)− U(ŵ′tYt+1)

= U(w̃′Yt+1)− U(ŵ′tYt+1) (24)

where w̃ = a(Σ), i.e. the Oracle optimal portfolio decision rule and ŵt = a(Σ̂) the portfolio

decision rule at time t based on a covariance estimates. The associated risk function is

defined as the expected value under the predictive distribution of the regret loss function

R(w̃, ŵt) =

∫
Y
L(w̃, ŵt)p(Yt+1|Y)dYt+1

≡ U(w̃′Yt+1)−
∫
Y
U(ŵ′tYt+1)p(Yt+1|Y)dYt+1 (25)

The portfolio allocation is defined minimizing (25). This is empirically equivalent to maxi-

mize the expected value of the utility function under the predictive distribution. A textbook

proof is provided in the appendix.
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According to (25), choosing the optimal decision rule, minimizing R(w̃, ŵt) to get the

outcome ŵt turns out to be equivalent of maximizing the expected value of the utility

function under the predictive distribution. Indeed, from a purely optimization point of

view, U(w̃′Yt+1) essentially clears away. However, the purpose is to discriminate among

the decision rules out-of-sample. Therefore, even though the decision rules is chosen ex-

ante, its admissibility must be evaluated ex-post. Just as in Pastor and Stambaugh (2000),

Kandel and Stambaugh (1996) and McCulloch and Rossi (1990), we define a performance

metrics we call the Actual Bayes Risk [ABR]. By using Proposition 2 and the assumption

of short sales allowed, we could define the Actual Bayes Risk, plugging w∗t = w(Σt+1|t) =

(Σ−1
t+1|tι)/(ι

′Σ−1
t+1|tι) in (25) as follows3

R(w̃,w∗t ) = U(w̃′Yt+1)− U(w∗
′
t Yt+1) = w∗

′
t Σt+1w

∗
t −

1

ι′Σ−1
t+1ι

(26)

with w̃ the unknown Oracle optimal portfolio allocation, ι = {1, ..., 1} an N-dimensional

vector of ones and Σt+1 the observed, ex-post, covariance matrix. In other words, (26)

represents the difference in terms of realized utility between the oracle and the action taken

under the risk minimization criteria in (25). We checked out-of-sample the admissibility

comparing the value assigned to (26) relative to each of the outcomes ŵt coming from

different decision rules. Economically speaking is the gain perceived by an investor who is

forced to accept the ŵ(Σ̂) with respect to the true unobservable decision portfolio rule.

4.1. A Common Bayesian Framework

Proposition 2 shows that the optimal portfolio decision rule reduce to maximize the

expected value of the utility function under the predictive distribution. We need to define

common Bayesian framework, in order to have a predictive distribution to compute the

expected utility in (25). Given the likelihood Yt|Σ ∼ N(0,Σ), the predictive density

is a function of the prior p(Σ). Each strategy can be reconduced to a differentr prior

specification. From Proposition 1 we can argue that

Proposition 3. Let Σ̃ = Σ̂+J, be the Jagannathan and Ma (2003) regularized covariance

estimator with Σ̂ the historical covariance estimates. Suppose now that p(Σ) = IW (ν0,J)

and Yt|Σ ∼ N(0,Σ) such that, we can generally interpret Σ̃ as the posterior expectation

3The order on the RHS is inverted since the utility function in the minimum variance case is negative
and the inf is reached with Σ known.
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of an inverse-wishart distribution such that

E[Σ|Y] = αJ̃ + (1− α)Σ̂ (27)

with α ∈ (0, 1), J̃ = J/(ν0 − N − 1), and α decreasing in T such that lim
T→∞

E[Σ|Dt] ≡

lim
T→∞

Σ̂ = Σ, consistently with the shrinkage intensity in Ledoit and Wolf (2004).

Proposition 3 allows the JM and GE being interpreted as different prior specifications,

leading to different portfolio decision rules. In the JM case, for instance, the prior covari-

ance matrix J comes from the lagrange multipliers of a standard quadratic programming

algorithm imposing non-negativity constraints just as suggested in Jagannathan and Ma

(2003). In our case the predictive is

p(Yt+1|Y) =

∫
Y
p(Yt+1|Y,Σt)p(Σt|Y)dΣt with p(Σt|Y) = IW (ν0+T,J+Y′Y) (28)

Then given Yt+1|Y,Σt ∼ N(0,Σt) the predictive is Yt+1|Y ∼ T (0,Σn, νn) with Σn =

J + Y′Y and νn = ν0 + T . As aforementioned the specification of J in JM and GE comes

from the lagrange multipliers as reported in Proposition 1. On the other hand, for the

LW case, the prior covariance matrix is essentially the one factor covariance structure

following Ledoit and Wolf (2003). The RiskMetrics case is reconduced to a standard

sequential updating scheme of an inverse wishart distribution as in (20)-(16). We check

for admissibility of constraining portfolio weights rules both through simulation examples

and an empirical analysis on a real dataset. The simulation is run essentially to allow the

Oracle utility being observable.

5. A Dynamic Bayesian shrinkage covariance estimator

A Natural approach of using financial models in decision making is through a bayesian

framework. An asset pricing model can be used as a prior reference around which the

decision maker makes the investment choice. The approach developed in this section

refers to a classical linear asset pricing model to build a shrinkage prior combined with the

historical information in the spirit of Ledoit and Wolf (2004) and Ledoit and Wolf (2003).

The prior is updated using a standarda inverse-wishart updating scheme and is estimated

through a Dynamic Linear Model [DLM]. The standard asset pricing model is from a

Seemingly Unrelated Regression [SURE], defined through the quadruple [Ft,Gt,Vt,Wt].

They represents respectively, the (1 × L) covariates, the (L × L) state evolution matrix,
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the (N ×N) observational variance matrix and finally the ((N ×L)× (N ×L)) evolution

variance matrix, with K the number of factors and L = K + 1. It is sensible to assume

that the intercepts and the slopes are correlated across the N stocks. Let us consider

Yt = rt − µ with rt = Rt − 1Nrf the returns in excess of the risk-free rate rf , and Xt the

K-dimensional vector of factor returns. The prior bulding model equations

Yt = (Ft ⊗ IN ) θt + vt vt ∼ NID(0,Vt)

θt = (Gt ⊗ IN ) θt−1 + wt wt ∼ NID(0,Wt) (29)

where Ft = [1,Xt], Gt = IL, θ = [α′, β′]′ and Wt a ((N × L) × (N × L)) block diagonal

matrix. Yet, θt is an (N × L)-dimensional state vector. Let us suppose Dt = {Yt, Dt−1}
and an initial prior at t = 0 as multivariate normal

(θ0|D0) ∼ N(m0,C0)

for some hyperparameters m0 and C0. The predictive covariance matrix in (4) is found

using the following filtering recursion:

• (a) Posterior at time t− 1:

For some mean mt−1 and covariance matrix Ct−1

(θt−1|Dt−1) ∼ N(mt−1,Ct−1) (30)

• (b) Prior at time t :

(θt|Dt−1) ∼ N(at,Rt)

where at = Gtmt−1 and Rt = Pt + Wt

with Pt = GtCt−1G
′
t and Wt = (δ−1 − 1)Pt

• (c) One-step forecast of the asset pricing model and the portfolio covariance prior

(Yt|Dt−1) ∼ N(ft,Qt)

where ft = Ftat and Vt = δVt−1 + diag(et−1e
′
t−1)

with Qt = FtRtF
′
t + Vt
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Combining the information from (31) and the historical information we can build a

shrinkage prior as

(Σt|Dt−1) ∼ IW (δbt−1, δ(ωSt−1 + (1− ω)Qt)) with ω ∈ (0, 1) (31)

for some initial S0.

• (d) Posterior at time t for the asset pricing model and the covariance posterior

(θt|Dt) ∼ N(mt,Ct)

with mt = at + Atet and Ct = Rt −AtQtA
′
t + Vt

where At = RtFtQ
−1
t and et = Yt − ft

Therefore the posterior of the portfolio covariance estimator can be defined as

(Σt|Dt) ∼ IW (bt,St)

with St = δ(ωSt−1 + (1− ω)Qt) + YtY
′
t bt = δbt−1 + 1

where δ ∈ (0, 1) represents a discount factor by which we impose time-varying dynamics in

the system evolution. Given the likelihood Yt|Σt ∼ N(0,Σt), we can define the predictive

by using (32) as

Yt+1|Dt ∼ T (0,St, bt) (32)

As we can see, (31) does not represent a double use of the data. Indeed, the predictive Qt

is essentially a function of the covariates at time t− 1 plus the observation variance Vt−1,

while St−1 is a function of Yt−1 on its own, regardless covariates. The same is true for

(32). In other words, the agent intervene in the system modifying at each step t the prior

according to the information coming from the equilibrium asset pricing model.

6. A simulation study of Admissibility: Constraining weights vs Bayesian

shrinkage estimator.

The portfolio strategies implemented are those reported in Table (1). Instead of the

classic Bayesian portfolio allocation BC we use the shrinkage version reported in Section

5. Rolling sample estimation is used except for the Bayesian strategy and the RiskMetrics
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methodology since they properly discount past information through a decay factor δ ∈
(0, 1). In each of the K = 20 simulation results the out-of-sample performance metrics is

the Actual Bayes Risk. The performances are analyzed backtesting each of the portfolio

strategies over six months of out-of-sample daily returns with daily rebalancing. The

out-of-sample period is T − M = 132 daily returns, with M = 252 fixed in the first

set of simulation results, and spanning from M = 100 to M = 210 in the second set of

simulations. The Actual Bayes Risk for the kth simulation under the s = 1, ..., S strategy

is defined as

ABRsk = U(w̃k
′Yk,t+1)− U(ws∗′

k,tYk,t+1) (33)

where w̃k is the Oracle decision rules in the kth simulation, ws∗
k,t is the outcome of the sth

strategy on the kth simulation and Yk,t+1 is the zero-mean simulated return. The results

reported are the averages of (33) across the K simulations. The first simulation example

runs different portfolio sizes for a fixed insample information set. This is done to point out

the portfolio size effect on the decision rule admissibility, especially as the ratio N/M ≈ 1.

According to basic random matrix theory arguments this represents the situation in which

noise dominates in the covariance estimates and a structured estimator is needed. Table

(4) reports the results.

[Insert Table 4 here]

With reference to N = 50, the RM portfolio decision rule reaches the lowest level of ABR.

Surprisingly the EW naive portfolio strategy is sensibly outperformed. This somehow

contradicts, from a decision theoretical point of view, the results in DeMiguel et al. (2009b)

in which a sensible superior performance of the 1/N strategy is well-documented. The DB

is consistently outperformed by the others except for EW and GE. Let us recall that we set

ω = 0.3 in the DB computation, and that RM essentially represents the DB with ω = 1,

i.e. disregard the asset pricing model information. Therefore, the inferior performance for

N = 50 is justified by the dominating relevance of historical information, given the low

N/M ratio. Considering ω = 0.3 we force the agent to consider the information from the

asset pricing model which turn out to be irrelevant, even hurting, if a large amount of

historical information is available. The big picture changes for N = 100, when the ratio

N/M slighlty increases. Here the DB outcome has the lowest ABR, while all of the others

portfolio decision rules increases the ABR except for the EW. The latter, although has
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the highest ABR, obviously marginally improves since do not involved neither estimation

nor computation issues. The level of daily turnover and the number of long positions

are fairly comparable across the strategies without sensible extremes. The same kind of

results persists for N = 150 and N = 200. Surprisingly for N = 250 both the JM and

the GE portfolio decision rules reaches the higher ABR. The reason is that when the ratio

N/M ≈ 1 the quadratic optimization programmin they are based on to get the lagrange

multipliers do not find an acceptable solution, as we can also see from the very high level

of daily Turnover. The DB still gets the lowest ABR, which is however, quite comparable

with the RM. The latter however, involves five times Turnover, meaning, is a five times

more costly portfolio strategy. Overall, both the JM and the GE, i.e. the constraining

portfolio weights, seems not be admissible since constantly dominated, in terms if ABR,

by the others. In this sense the RM and the DB reaches the lowest ABR. Let us recall

they represents essentially the same Bayesian recursion with a different value of ω ∈ (0, 1)

in (32). In order to have a clearer understading Figure (1) reports the Relative Economic

Loss [REL], consistently with Jorion (1986). The latter is defined as the average across

the K simulations of the relative change in the ABR as follows

RELks =
U(w̃k

′Yk,t+1)− U(ws∗′
k,tYk,t+1)

U(w̃k
′Yk,t+1)

(34)

It can be interpreted as the percentage economic loss perceived by an investor who is

forced to accept the portfolio selection rule ws∗
k,t instead of the unknown Oracle w̃k. It is

nonnegative by construction and, economically speaking, the lower is the better is the sth

portfolio decision rule. Yet, (34) is a positive transformation of (33), being useful to check

for admissibility.

[Insert Figure 1 here]

As we can see from Figure (1), all of the portfolio decision rules converges as the ratio

N/M → 0, meaning the noise in the covariance estimator sensibly reduces. However, the

DB strategy consistently outperform the others from N = 250 to N = 100 being essentially

equivalent in N = 50 with respect to RM, LW and BU. This picture provides some further

insight on the inadmissibility of constraining weights as “equivalently optimal” allocation

rules.

The second simulation example runs for fixed portfolio size N = 100 changing the

insample from M = 130 to M = 210. As in the first simulation example, the portfolio
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ABRs are analyzed backtesting the decision rules over six months of out-of-sample daily

returns with daily rebalancing. As further metrics we report the daily percentage Turnover

and the number of Long position as diversification proxy. Table (5) reports the performance

statistics.

[Insert Table 5 here]

With reference toM = 130, the DB reaches a sensibly lower ABR. Although has a fairly low

Turnover, the EW strategy reaches an high ABR, as reported in the previous simulation

example. Even though the DB outperforms the others, also the RM and the LW still

performs pretty well. The results are qualitatively the same in M = 170. Here the DB

reaches both a lower Turnover and the lowest ABR. The level of diversification is almost the

same across the strategies. Finally for M = 210 both the JM and GE improves, together

with BU. This is because the ratio N/M decreases, increasing the relevance of historical

information in the covariance estimates since noise decreases. The DB portfolio decision

rule still has the lowest ABR. As for the first simulation example Figure (2) reports the

REL averaged across simulations as from (34).

[Insert Figure 2 here]

As we can see, the DB constantyl outperform the others portfolio decision rules in terms

of PEL, being around 5 across sample sizes. The EW shows the highest REL meaning,

the investor obliged to choose the 1/N strategy against the Oracle incures in the highest

relative economic loss. The GE get a REL qualitatively as high as the EW portfolio

decision rule being around 30 across sample sizes. With reference to JM, LW, BU and

RM, they tend to converge after M = 170 the ratio N/M being closer to zero, reducing the

noise in the covariance estimates. As a whole the DB shows the lowest Relative Economic

Loss.

7. An Empirical Analysis on the NYSE/AMEX

Whether portfolio constraints helps or hurts for risk reduction in Large Portfolios is

essentially an empirical question. In this section we investigate the effect of constraining

weights as opposed to use alternative portfolio allocation strategies on a real dataset. Our

goal is to compare out-of-sample performances on large portfolios for each of the decision
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rules reported in Table (1). The optimal outcome wt = a(Σt+1|t), for each decision rule

is set in the common Bayesian framework developed in Section 6. However, on the real

dataset, the Oracle is not assumed to be observable, therefore, the action taken by the

representative agent essentially aims to maximize the expected value of the utility function

under the predictive distribution. The latter can be defined for all of the portfolio strategies

exploiting Proposition 3. The dataset consists of all the common stocks traded on NYSE

and AMEX, with stock price greater than five dollars and non trivial market capitalization,

keeping a total of 2246 shares. Data are taken from CRSP. In order to construct the

linear asset pricing model we use a Value-Weighted Index from CRSP containing all the

stocks in the NYSE/AMEX as proxy for the market portfolio. Yet, data are from CRSP,

while the risk-free daily rate is taken from Ken French’s website. The study period is

from October 29, 2007 to December 31, 2010 with daily data. Our analysis relies on

rolling sample estimation except for the Bayesian and the RiskMetrics approaches since

they properyl discount past information through a decay factor δ ∈ (0, 1). To avoid any

particular stock picking methodology the stock selection is made randomly for each of

the portfolio size considered, then kept constant throughout out-of-sample. The portfolio

sizes are N = [50, 200, 400], and for each size several performance measures are considered.

Given an insample period of two years of daily data M = 504 we generate T −M = 132

of out-of-sample portfolio returns, meaning six-month of daily returns, for each of the

portfolio strategies reported in Table (1). The first set of metrics is based on the realized

gross-return for each of the s = 1, ...S strategies defined as

rs,t = w′s,trt+1, t = M + 1, ...T (35)

with rt+1 the realized simulated asset returns at time t+1, and ws,t the outcome from the

sth decision rule, chosen on the basis of expected utility maximization at time t. From the

realized gross-return we can define the wealth dynamics, net of the transaction costs tc as

Ws,t+1 = Ws,t(1 + rs,t+1)

1− tc×
N∑
j=1

∣∣wjs,t+1 − w
j
s,t+

∣∣ (36)

where wjs,t+1 the relative portfolio weight in asset j, at time t+1, under portfolio rule s,

and wj
s,t+

is the same weight right before rebalancing. The realized net return on wealth
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for strategy s is then given by

rWs,t+1 =
Ws,t+1

Ws,t
− 1 (37)

From (37) the first two performance out-of-sample metrics are the Expected Net Wealth

as

µWs =
1

T −M

T−M∑
t=1

rWs,t (38)

and the out-of-sample Wealth Risk Exposure defined as

σWs =

√√√√ 1

T −M

T−M∑
t=1

(
rWs,t − µWs

)2
(39)

Then the out-of-sample wealth sharpe ratio out-of-sample for the strategy s is simply

defined as

SRW
s =

µWs
σWs

(40)

Now, (38), (39) and (40) represent the first set of performance measures to evaluate port-

folio decision rules in Table (1). They are strictly related to economic performances of

each strategy. The transaction costs tc are equal to 50 basis points as reported in Balduzzi

and Lynch (1999). The second set of out-of-sample metrics is more related to portfolio

stability and diversification. To get of sense of the amount of trading involved by each

strategy we compute the Turnover as

TOs =
1

T −M

T−M∑
t=1

N∑
j=1

(∣∣wjs,t+1 − w
j
s,t+

∣∣) (41)

This quantity can be interpeted as the average percentage of wealth traded in each period.

We report the absolute value of turnover for each of the S strategies. Finally we report

the number of highest and the lowest weights together with the number of long positions

defined as

Longs =

N∑
j=1

1
{
wjs,t

}
with 1

{
wjs,t

}
=

{
1 if wjs,t > 0

0 otherwise
(42)

24



All of the performance measures are measured daily then annualized. The empirical results

are reported in Table (6). With reference to N = 50 the first row reports the mean wealth

return. Surprisingly all of the decision rules, except DB and RM , gets negative returns.

In particular the 1/N naive portfolio strategy has a highly negative annual return. The

highest positive return is from the DB strategy.

[Insert Table 6 here]

Let us recall that the portfolio selection is made randomly for each portfolio size and the

stocks selected are the same across the different strategies. The RM reports the lowest

wealth annualized risk exposure, even though the DB fairly behaves. The RM essentially

impose dynamics on the covariance estimates, while in the DB we impose both dynamics

and structure through the shrinkage like sequential prior specification depicted in Section 5.

The outperformance of RM therefore provides some evidence on how dynamics dominates

structure if the ratio N/M is appreciably low. This is theoretically confirmed considering

that RM represents DB with ω = 1, meaning, disregarding the sequential shrinking prior.

All of the others decision rules underperform even though they report fairly good results.

This is true for the LW, the JM and the BU case. The third row reports the Sharpe

Ratio as computed in (40). As we can see, even though the DB is slightly riskier than the

RM reports a fairly higher annualized sharpe ratio because of higher positive annualized

returns. This can be better understand from Figure (3).

[Insert Figure 3 here]

The DB seems to be the only decision rule gets appreciably positive cumulative wealth

out-of-sample. On the other hand the EW strategy, although performs quite well till

T −M = 80 sensibly drops thereafter. The BU and the LW show almost the same path for

the cumulative wealth, being however less than one for most of the testing sample. The

out-of-sample Turnover, is almost the same across the decision rules except for DB and

the EW. As a matter of fact, the 1/N strategy reports a fairly lower Turnover on average.

This is in line with DeMiguel et al. (2009b) and DeMiguel et al. (2009a), in which the

authors reported the 1/N strategy as the more stable decision rule with respect to other

classical benchmark strategies. The higher stability of the naive strategy is essentially

due to the fact that does not involve neither estimation nor optimization. The last three
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for N = 50 report respectively the Min and the Max portfolio weights together with the

number of Long positions. Since the number of stocks considered is fairly low, Long does

not differ sensibly across the different portfolio rules. On the other hand, while the EW

by construction does not report short positions, all of the strategies report fairly extreme

positions, in light of the portfolio size. The RM shows an average short minimum weight

of -38% which is fairly extreme considering the agent could potentially invest in 50 stocks.

The same is true for the average long positions across strategies which is almost always

around 60%. However, DB shows a different characteristic. The portfolio composition

report very small average minimum short positions and financially reasonable average

long positions. This essentially provides evidences in support of the financial reliability of

the DB as, not only the most profitable risk-adjusted strategy, but also the more financially

reliable. The whole picture is almost the same for N = 200. The first row reports the

expected net return on wealth as from (38). As for the previous case the DB decision rule

shows the highest value. Again, both the RM and the DB are the only strategies reporting

a positive average net return on wealth. The LW reports the lowest wealth risk exposure,

together with the JM decision rule. Remember that they essentially both represent a

shrinkage covariance estimation decreasing the high eigenvalues due to estimation error

and increasing the low eigenvalues due to sampling error. The RM is outperformed by the

DB meaning, as the ratio N/M increases getting close to one, the structure imposed by the

shrinking prior starts to play a relevant role. The third row report the Sharpe Ratio. The

DB reports the highest annualized Sharpe Ratio even though the annualized risk exposure

is not the lowest. This is because the highest expected net return on wealth. Overall, yet,

surprisingly all of the portfolio decision rules has a negative mean return on wealth except

for RM and DB. This can be better understood looking at the out-of-sample path of the

cumulative portfolio strategy returns reported in Figure (4).

[Insert Figure 4 here]

Still the DB reports a positive cumulative wealth dynamics considering the one dollar

investment at the beginning of the testing period. The wealth dynamics showed by the

naive 1/N strategy is fairly unstable reporting an high positive performance till T−M = 90

then dropping thereafter. The JM, together with the others, except RM and DB, reports a

generally negative cumulative wealth considering the initial supposed investment. Still the

LW and the BU have a testing period cumulative wealth very close to each other. With

reference to Turnover, the RM turns out to increases marginally the daily amount of trading
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needed to get the net return on wealth. The DB still reports the lowest Turnover and the

naive 1/N naive decision rule still have a fairly low level of Turnover. Yet, this depends on

the absence of any estimation/optimization procedure involved in the 1/N strategy. The

portfolio composition of the RM reports yet extreme average negative position with Min

equal to -18%, which is fairly extreme considering the portfolio size. As for the N = 50

the DB reports the most financially plausible portfolio composition with a lowest short

position below one percent and an highest average long position around 19%. The average

mass of positive weights is fairly comparable across strategies, even though the DB seems

to show some diversification benefit other than more financially relevant portfolio weights.

The EW has only long positions by construction. Finally the picture becomes slightly more

in favour of the DB portfolio rule for the N = 400 case. All of the portfolio strategies

report a negative mean net return on wealth except for DB which get an annualized 1.1%.

Yet, the DB portfolio decision rule has the lowest Wealth Risk Exposure as from (39).

As for the other portfolio sizes, the JM and the LW have a fairly comparable level of

risk exposure. They indeed represents a conceptually comparable shrinkage covariance

estimator, as proved in Jagannathan and Ma (2003). This parallel behavior seems to

support their results as a whole. Obviously, from the expected net return on wealth the

DB is the only portfolio decision rule gets a positive annualized Sharpe Ratio, which is

however fairly low being around 0.35. The level of Turnover marginallt increases for the

DB strategy begin now almost in line with the 1/N naive portfolio decision rule. This, yet,

is in line with DeMiguel et al. (2009a) and DeMiguel et al. (2009b). The rationale for the

Min and Max positions is repeated also for N = 400. Indeed, the DB portfolio decision

rule report very small average short positions as opposed to the fairly extreme negative

positions of the other decision rules. The same is true for Max, since the DB reports fairly

lower average long positions. Finally the number of Long positions marginally increases

for the DB with respect to the others portfolio decision rules, meaning as the portfolio size

increases, we get a marginally higher diversification benefit.

Summarizing the DB strategy seems to outperform as a whole the competing portfolio

decision rules. This is especially true for Large Portfolios, i.e. N = 400. This findings

essentially support the hypothesis that, when the ratio N/M → 1, consider jointly dy-

namics and structure in the covariance estimates provides out-of-sample outperformances.

Yet, the findings in the empirical section provide some useful insight on the suboptimality

of using artificial portfolio constraints, which of course turn out to be useful especially

for Large Portfolios (outperformance of JM on RM and EW), but still underperform a
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benchmark dynamic structured covariance estimator as proposed in DB.

8. Concluding Remarks

Jagannathan and Ma (2003) proposed constraining portfolio allocation rules as a way

reduce estimation error/risk exposure through covariance regularization. The same is ar-

gued in DeMiguel et al. (2009b), Fan et al. (2008), DeMiguel et al. (2009a) and Brodie

et al. (2008) among the others. They argued that more stable portfolio selection policies

can be induced by imposing no-short sales, gross-exposure and upper bounds regardless

covariance estimates. Interpreting portfolio weights as actions in a standard expected util-

ity maximization framework, we first show the suboptimality of constraining weights with

respect to a simple Bayesian benchmark rule. We generalize the expected utility frame-

work to a common Bayesian setup to check for admissibility of portfolio decision rules in a

standard statistical decision theory context, developing a Dynamic Bayesian covariance es-

timator as benchmark model. The latter combines a sequential shrinkage prior in the spirit

of Ledoit and Wolf (2004) with a standard inverse wishart updating scheme. Based on

simulation examples and an empirical analysis we show that artificially constrained alloca-

tions are suboptimal/inadmissible portfolio decision rules therefore incompatible with the

standard von Neumann-Morgenstern rationality assumption in a general expected utility

maximization framework.

Appendix

A. Proof of Proposition 1

Let us consider a general loss function as

L(w̃, ŵ) = Lu(w̃, ŵ)− inf
ŵ∈A

Lu(w̃, ŵ) (43)

The posterior expected loss of the action ŵ(θ), when the posterior distribution is p(θ|R)

can be defined as

ρ(w̃, ŵ) =

∫
Θ
L(w̃, ŵ)p(θ|R)dθ (44)

28



A (posterior) Bayes Action is then the one minimizes (44). Now integrating over the

predictive distribution we get

R(w̃, ŵ) =

∫
R

[ρ(w̃, ŵ)] p(R̃|R)dR̃ =

∫
R

[∫
Θ
L(w̃, ŵ)p(θ|R)dθ

]
p(R̃|R)dR̃ (45)

with R̃ the unobserved future return. Now since ρ(w̃, ŵ) ≥ −∞ and all measures are

finite, by Fubini’s theorem we can invert the integrals such that

R(w̃, ŵ) =

∫
Θ

[∫
R
L(w̃, ŵ)p(R̃|R)dR̃

]
p(θ|R)dθ (46)

Now the intuitive recipe for finding a bayes strategy is to minimize the expected loss inside

the brackets. Indeed, in doing this we minimize the integral outside the brackets finding

the so called optimal bayes rule (see Parmigiani and Inoue (2009) for more details).

B. Proof of Proposition 3

Let us consider the inverse-wishart prior for Σ and an N-dimensional Yt i.i.d and

zero-mean normally distributed vector of returns at time t

p(Σ|J, ν0) ∝ |Σ|−(ν0+N+1)/2 exp

{
−1

2
tr
(
JΣ−1

)}
p(Y|Σ) ∝ |Σ|−T/2 exp

{
−1

2
tr
(
Σ−1Y′Y

)}
(47)

The posterior distribution is conjugate so is easily found as

p(Σ|Y) ∝ |Σ|−(νn+N+1)/2 exp

{
−1

2
tr
(
Σ−1Λn

)}
, with νn = ν0+T,Λn = J+Y′Y (48)

such that the conditional mean turns out to be

E[Σ|Y] =
Λn

νn −N − 1
=

J + Y′Y

ν0 + T −N − 1
= αJ̃ + (1− α)S (49)

with

α =
ν0 −N − 1

ν0 + T −N − 1
∈ (0, 1) and J̃ =

J

ν0 −N − 1
(50)

Taking the limits for T →∞ of (49) we get the proposition.
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C. The Historical resampled allocation

In this section we explain the bootstrap procedure implemented to construct a robust

portfolio allocation based on historical estimation. The aim is to define a portfolio al-

location procedure comparable with the other portfolio allocation decision rules. Let us

consider the optimal allocation function in (??), then under the assumption of short-sales

we have the closed form solution in (??). Now, to define the optimal portfolio weights the

resampling recipes has the following steps.

Step 1 Estimate the Covariance structure Σ0 from the observed time series of returns. This

is done by the usual MLE estimator

Σ̂ =
1

T − 1

T∑
t=1

RtR
′
t (51)

with Rt the N-dimensional vector of returns at time t.

Step 2 Suppose the time series R ∼ NID(0,Σ0);

Step 3 Resample a large number Q of monte carlo scenarios from the distribution assumption

in Step 2.

Step 4 Estimate Σq for q = 1, ..., Q as in Step 1 from each of the Rq returns generated.

Step 5 Compute the global minimum variance portfolio weights wq as in (??).

Step 6 Define the optimal resample portfolio as the average of the above allocations

wmc =
1

Q

Q∑
q=1

wq, q = 1, ..., Q (52)

This is not a probability model, but represents a fairly good practical standarad to deal

with input parameters uncertainty. Yet, allows to use the historical estimation Σ0 as a

baseline input parameters.
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Table 1: List of portfolio decision rules considered

No. Model Abbreviation

Naive
1. 1/N with rebalancing EW

Portfolio Constraints
2. Shortsales constrained portfolio JM
3. Gross-Exposure portfolio c = 2 GE

Bayesian approach
4. Classical Bayesian portfolio allocation BC
5. Dynamic Bayesian with shrinking prior DB

Alternative covariance estimators
6. Ledoit-Wolf with 1-factor covariance target LW
7. RiskMetrics RM

Alternative robust portfolio rules
8. Bootstrap portfolio allocation BU
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Figure 1: Relative Economic Loss insample information fixed M = 252

This figure reports the Relative Economic Loss defined in (34), obtained changing the portfolio size from
N = 50 to N = 250, and fixing the insample length to M = 252. The out-of-sample information is six
months of daily trading returns, i.e. T −M = 132.

Figure 2: Relative Economic Loss portfolio size fixed N = 100

This figure reports the Relative Economic Loss defined in (34). The insample length span from M = 130
to M = 210, and the portfolio size is fixed at N = 100. The out-of-sample information is six months of
daily trading returns, i.e. T −M = 132.
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Figure 3: Cumulative Wealth out-of-sample N = 50

This figure reports the Cumulative portfolio wealth for the N = 50 portfolio size on a six-month daily
tradin out-of-sample period. The portfolio is selected randomly at the beginning and kept constants
across rebalancing to avoid any particular stock picking issue.

Figure 4: Cumulative Wealth out-of-sample N = 200

This figure reports the Cumulative portfolio wealth for the N = 200 portfolio size on a six-month daily
tradin out-of-sample period. The portfolio is selected randomly at the beginning and kept constants
across rebalancing to avoid any particular stock picking issue.
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